首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29475篇
  免费   1243篇
  国内免费   2303篇
测绘学   1896篇
大气科学   3026篇
地球物理   5872篇
地质学   14160篇
海洋学   1770篇
天文学   1858篇
综合类   2611篇
自然地理   1828篇
  2024年   20篇
  2023年   76篇
  2022年   261篇
  2021年   276篇
  2020年   245篇
  2019年   261篇
  2018年   4956篇
  2017年   4249篇
  2016年   2874篇
  2015年   491篇
  2014年   405篇
  2013年   339篇
  2012年   1289篇
  2011年   3034篇
  2010年   2304篇
  2009年   2564篇
  2008年   2146篇
  2007年   2621篇
  2006年   324篇
  2005年   421篇
  2004年   578篇
  2003年   588篇
  2002年   431篇
  2001年   196篇
  2000年   240篇
  1999年   249篇
  1998年   220篇
  1997年   216篇
  1996年   162篇
  1995年   180篇
  1994年   148篇
  1993年   125篇
  1992年   91篇
  1991年   87篇
  1990年   62篇
  1989年   57篇
  1988年   41篇
  1987年   28篇
  1986年   35篇
  1985年   17篇
  1984年   8篇
  1983年   9篇
  1982年   11篇
  1981年   36篇
  1980年   25篇
  1979年   9篇
  1978年   3篇
  1976年   7篇
  1958年   4篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
In today’s world, the innovation of science and technology has become the key support for improving comprehensive national strength and changing the mode of social production and lifestyle. The country that possesses world-class scientific and technological innovation cities maximizes the attraction of global innovation factors and wins a strategic initiative in international competition. Based on the urban zip code geodatabase, an evaluation system of urban innovation with the perspective of innovation outputs, and the spatial evolutionary mode, concerning the structure of innovation space of Shanghai and Beijing from 1991 to 2014, was developed. The results of the research indicated that the zip code geodatabase provided a new perspective for studying the evolving spatial structure of urban innovation. The resulting evaluation of the spatial structure of urban innovation using the urban zip code geodatabase established by connecting random edge points, was relatively effective. The study illustrates the value of this methodology. During the study period, the spatial structure of innovation of Shanghai and Beijing demonstrated many common features: with the increase in urban space units participating in innovation year by year, the overall gap of regional innovation outputs has narrowed, and the trend towards spatial agglomeration has strengthened. The evolving spatial structure of innovation of Shanghai and Beijing demonstrated differences between the common features during the 25 years as well: in the trend towards the suburbanization of innovation resources, the spatial structure of innovation of Shanghai evolved from a single-core to a multi-core structure. A radiation effect related to traffic arteries as spatial diffusion corridors was prominent. Accordingly, a spatial correlation effect of its innovation outputs also indicated a hollowness in the city center; the spatial structure of innovation of Beijing had a single-core oriented structure all the way. Together with the tendency for innovation resources to be agglomerated in the city center, the spatial correlation effect of innovation outputs reflected the characteristics of the evolutionary feature where “rural area encircles cities”. The innovation spatial structure of Shanghai and Beijing have intrinsic consistency with the spatial structure of their respective regions (Yangtze River Delta urban agglomeration and Beijing-Tianjin-Hebei metropolitan region), which suggested that the principle of proportional and disproportional distribution of a city-scale pattern of technological and innovational activities is closely related to its regional innovation pattern.  相似文献   
992.
The Inner Mongolia reaches of the Yellow River face problems of severe sedimentation caused by a variety of complex factors. The sedimentation process in those reaches has been characterized using the sediment balance method, and the key factors affecting the process have been analyzed using the correlation analysis method. The results show that during the period 1952–2012 the Bayangaole (Bayan Gol) to Toudaoguai reaches in Inner Mongolia have undergone successive processes of accumulative sedimentation, then relative balance, and then accumulative sedimentation once again. The total annual sedimentation is 12.0341×108 m3, of which accumulations from July to October account for 95.1% and the reaches from Sanhuhekou to Toudaoguai account for 98.5%. The main factor affecting scouring and sedimentation of the Bayangaole to Sanhuhekou reaches is the combined water and sediment condition. The critical conditions for equilibrium are an incoming sediment coefficient < 0.007 kg·s·m–6 and a flow discharge > 700 m3·s–1. The main factor affecting scouring and sedimentation of the Sanhuhekou to Toudaoguai reaches is the incoming sediment from the tributaries on the south bank and the combined water and sediment condition of the main stream. The critical conditions of the main stream for maintaining equilibrium status are a flow discharge of the main stream exceeding 800 m3·s–1 and a comprehensive incoming sediment coefficient < 0.005 kg·s·m–6. The incoming sediment from the tributaries has little impact on the main stream when the annual sediment load is less than 0.1×108 t. The incoming sediment coefficient of the main stream and the incoming sediment from the tributaries both play vital roles in the riverbed evolution of the Inner Mongolia reaches, but the latter contributes the most.  相似文献   
993.
Non-point source pollution is one of the primarily ecological issues affecting the Three Gorges Reservoir Area. In this paper, landscape resistance and motivation coefficient, which integrated various landscape elements, such as land use, soil, hydrology, topography, and vegetation, was established based on the effects of large-scale resistance and motivation on the formation of non-point source pollution. In addition, cost models of the landscape resistance and motivation coefficients were constructed based on the distances from the landscape units to the sub-basin outlets in order to identify the “source” and “sink” patterns affecting the formation of non-point source pollution. The results indicated that the changes in the landscape resistance and motivation coefficients of the 16 sub-basins exhibited inverse relationships to their spatial distributions. The landscape resistance and motivation cost curves were more volatile than the landscape resistance and motivation coefficient curves. The landscape resistance and motivation cost trends of the 16 sub-basins became increasingly apparent along the flow of the Yangtze River. The landscape resistance and motivation cost models proposed in this paper could be used to identify large-scale non-point source pollution “source” and “sink” patterns. Moreover, the proposed model could be used to describe the large-scale spatial characteristics of non-point source pollution formation based on “source” and “sink” landscape pattern indices, spatial localization, and landscape resistance and motivation coefficients.  相似文献   
994.
Dongting Lake is the largest lake in the middle reaches of the Yangtze River in China. For centuries, people inhabiting the Dongting Lake area have been reclaiming land and constructing dams for flood resistance, agricultural production, and rural settlement, forming geographical entities known as polders. In this study, the regional spatial distributions of polders in the Dongting Lake area in 1949, 1998, and 2013 were obtained using historical maps and modern remotely sensed data, revealing changes since the establishment of the People’s Republic of China. Nanxian County was then selected to demonstrate polder changes at the county level, because it has undergone the most dramatic changes in the area. Different polder change models for the Datonghu, Yule, and Renhe polders were analyzed for eight periods: 1644 (the early Qing Dynasty), 1911 (the late Qing Dynasty), 1930 (the Republic of China), 1949 (the People’s Republic of China), 1963, 1970, 1998, and 2013. Three resulting polder evolution models are: 1) reclaiming polders from lakes, 2) integrating polders by stream merging, and 3) abandoning polders for flood release. The polder evolution models demonstrate the wisdom of local people in using land resources according to the specific regional conditions. Throughout their long-term historical evolution, the spatial distribution of polders in the Dongting Lake area tended to be homogeneous, and the degree of human disturbance tended to be stable. However, a shift occurred, from pure polder area growth or removal to more comprehensive management and protection of the regional environment.  相似文献   
995.
Sustainable development has always been a hotspot in Chinese geographical research. Herein, we conduct a systematic statistical analysis of the contribution of Chinese geographers to sustainable development research using bibliometric methods. Based on the review of a vast amount of literature, we identify the main research teams, research funding sources, journals, and key research fields. The findings are as follows: (1) the resources and environmental institutes of the Chinese Academy of Sciences have a significant influence on sustainable development research; (2) China’s central government foundations (the National Natural Science Foundation of China and National Social Sciences Fund) are the main research funding sources; (3) most of the highly cited articles are published in journals sponsored by the Geographical Society of China; and (4) sustainable development theory and its research areas are being constantly enriched and perfected. Based on the statistics of keywords, the theory, research methods, research regional scales, and key research areas are summarized and expounded.  相似文献   
996.
The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980s, especially after the year 2000. The annual average sediment yield was 1.2 billion tons before 2000, but has significantly decreased to 0.3 billion tons over the last 10 years. Changes in discharge and sediment yield for the Yellow River have attracted the attention of both the Central Government and local communities. This study aimed to identify the individual contributions of changes in precipitation and human activities (e.g. water conservancy projects, terracing, silt dams, socio-economic and needs, and soil and water conservation measures) to the decrease in discharge and sediment yield of the Yellow River. The study used both improved the hydrological method and the soil and water conservation method. The study focused on discharge analysis for the upper reaches and the investigation of sediments for the middle reaches of the river. The results showed that discharge and sediment yield have both presented significant decreasing trends over the past 50 years. Precipitation showed an insignificant decreasing trend over the same period. The annual average discharge decreased by 5.68 billion m3 above Lanzhou reach of the Yellow River from 2000 to 2012; human activities (e.g. socio-economic water use) contributed 43.4% of the total reduction, whereas natural factors (e.g. evaporation from lakes, wetlands and reservoirs) accounted for 56.6%. The decrease in annual discharge and sediment yield of the section between Hekouzhen station and Tongguan station were 12.4 billion m3 and 1.24 billion tons, respectively. Human activities contributed 76.5% and 72.2% of the total reduction in discharge and sediment yield, respectively, and were therefore the dominant factors in the changes in discharge and sediment yield of the Yellow River.  相似文献   
997.
Degrading river network due to urbanization in Yangtze River Delta   总被引:1,自引:0,他引:1  
Evolution of river systems under the background of human activities has been a heated topic among geographers and hydrologists. Spatial and temporal variations of river systems during the 1960s–2010s in the Yangtze River Delta (YRD) were investigated based on streams derived from the topographic maps in the 1960s, 1980s and 2010s. A list of indices, drainage density (Dd), water surface ratio (WSR), ratio of area to length of main streams (R), evolution coefficient of tributaries (K) and box dimension (D), were classified into three types (quantitative, structural, and complex indices) and used to quantify the variations of stream structure. Results showed that: (1) quantitative indices (Dd, WSR) presented decreasing trend in the past 50 years, and Dd in Wuchengxiyu, Hangjiahu and Yindongnan have decreased most, about 20%. Structurally, the Qinhuai River basin was characterized by significant upward R, and K value in Hangjiahu went down dramatically by 46.8% during the 1960s–2010s. Decreasing tendency in D was found dominating across the YRD, and decreasing magnitude in Wuchengxiyu and Hangjiahu peaks for 7.8% and 6.5%, respectively in the YRD. (2) Urbanization affected the spatial pattern of river system, and areas with high level of urbanization exhibited least Dd (2.18 km/km2), WSR (6.52%), K (2.64) and D (1.42), compared to moderate and low levels of urbanization. (3) Urbanization also affected the evolution of stream system. In the past 50 years, areas with high level of urbanization showed compelling decreasing tendency in quantitative (27.2% and 19.3%) and complex indices (4.9%) and trend of enlarging of main rivers (4.5% and 7.9% in periods of the 1960s–1980s and the 1980s–2010s). In the recent 30 years, areas with low level of urbanization were detected with significant downward trend in Dd and K. (4) Expanding of urban land, construction of hydraulic engineering and irrigation and water conservancy activities were the main means which degraded the river system in the YRD.  相似文献   
998.
Large amounts of digital data must be analyzed and integrated to generate mineral potential maps, which can be used for exploration targeting. The quality of the mineral potential maps is dependent on the quality of the data used as inputs, with higher quality inputs producing higher quality outputs. In mineral exploration, particularly in regions with little to no exploration history, datasets are often incomplete at the scale of investigation with data missing due to incomplete mapping or the unavailability of data over certain areas. It is not always clear that datasets are incomplete, and this study examines how mineral potential mapping results may differ in this context. Different methods of mineral potential mapping provide different ways of dealing with analyzing and integrating incomplete data. This study examines the weights of evidence (WofE), evidential belief function and fuzzy logic methods of mineral potential mapping using incomplete data from the Carajás mineral province, Brazil to target for orogenic gold mineralization. Results demonstrate that WofE is the best one able to predict the location of known mineralization within the study area when either complete or unacknowledged incomplete data are used. It is suggested that this is due to the use of Bayes’ rule, which can account for “missing data.” The results indicate the effectiveness of WofE for mineral potential mapping with incomplete data.  相似文献   
999.
Industrial, technological, and economic developments depend on the availability of metallic raw materials. As a greater fraction of the Earth’s population has become part of developed economies and as developed societies have become more affluent, the demand on metallic mineral resources has increased. Yet metallic minerals are non-renewable natural resources, the supply of which, even if unknown and potentially large, is finite. An analysis of historical extraction trends for eighteen metals, going back to the year 1900, demonstrates that demand of metallic raw materials has increased as a result of both increase in world population and increase in per-capita consumption. These eighteen metals can be arranged into four distinct groups, for each of which it is possible to identify a consistent pattern of per-capita demand as a function of time. These patterns can, in turn, be explained in terms of the industrial and technological applications, and in some cases conventional uses as well, of the metals in each group. Under the assumption that these patterns will continue into the future, and that world population will grow by no more than about 50% by the year 2100, one can estimate the amount of metallic raw materials that will be required to sustain the world’s economy throughout the twenty-first century. From the present until the year 2100, the world can be expected to require about one order of magnitude more metal than the total amount of metal that fueled technological and economic growth between the age of steam and the present day. For most of the metals considered here, this corresponds to 5–10 times the amount of metal contained in proven ore reserves. The two chief driving factors of this expected demand are growth in per-capita consumption and present-day absolute population numbers. World population is already so large that additional population growth makes only a small contribution to the expected future demand of metallic raw materials. It is not known whether or not the amount of metal required to sustain the world’s economy throughout this century exists in exploitable mineral resources. In the accompanying paper, I show that it is nevertheless possible to make statistical inferences about the size distribution of the mineral deposits that will need to be discovered and developed in order to satisfy the expected demand. Those results neither prove nor disprove that the needed resources exist but can be used to improve our understanding of the challenges facing future supply of metallic raw materials.  相似文献   
1000.
There is a need to bridge theory and practice for incorporating parameter uncertainty in geostatistical simulation modeling workflows. Simulation workflows are a standard practice in natural resource and recovery modeling, but the incorporation of multivariate parameter uncertainty into those workflows is challenging. However, the objectives can be met without considerable extra effort and programming. The sampling distributions of statistics comprise the core theoretical notion with the addition of the spatial degrees of freedom to account for the redundancy in the spatially correlated data. Prior parameter uncertainty is estimated from multivariate spatial resampling. Simulation-based transfer of prior parameter uncertainty results in posterior distributions which are updated by data conditioning and the model domain extents and configuration. The results are theoretically tractable and practical to achieve, providing realistic assessments of uncertainty by accounting for large-scale parameter uncertainty, which is often the most important component impacting a project. A simulation-based multivariate workflow demonstrates joint modeling of intrinsic shale properties and uncertainty in estimated ultimate recovery in a shale gas project. The multivariate workflow accounts for joint prior parameter uncertainty given the current well locations and results in posterior estimates on global distributions of all modeled properties. This is achieved by transferring the joint prior parameter uncertainty through conditional simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号