首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   0篇
大气科学   5篇
地球物理   23篇
地质学   43篇
海洋学   31篇
自然地理   3篇
  2022年   4篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2010年   10篇
  2009年   12篇
  2008年   7篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
61.
The effects of large-scale wind forcing on the bimodality of the Kuroshio path south of Japan, the large meander (LM) and non-large meander (NLM), were studied by using a historical simulation (1948–2007) with a high-resolution Ocean general circulation models (OGCM). The Kuroshio in this simulation spent much time in the NLM state, and reproduced several aspects of its long-term path variability for the first time in historical OGCM simulation, presumably because the eddy kinetic energy was kept at a moderate level. By using the simulated fields, the relationships between wind forcing (or Kuroshio transport) and path variation proposed by past studies were tested, and specific roles of eddies in those variations were investigated. The long-term variation of the simulated net Kuroshio transport south of Japan was largely explained by the linear baroclinic Rossby wave adjustment to wind forcing. In the simulated LM events, a triggering meander originated from the interaction of a wind-induced positive sea surface height (SSH) anomaly with the upstream Kuroshio and was enlarged by cyclonic eddies from the recirculation gyre. The cyclonic eddy of the trigger meander was followed by a sizable anticyclonic eddy on the upstream side. Subsequently, a weak (strong) Kuroshio favored the LM (NLM). The LM tended to be maintained when the Kuroshio transport off southern Japan was small, and increasing Kuroshio transport promoted decay of an existing LM. The supply of disturbances from upstream, which is related to the wind-induced SSH variability at low latitudes, contributed to the maintenance of an existing LM.  相似文献   
62.
A long-term spin-up and a subsequent interannual simulation are conducted for the ocean–ice component of the climate model intercomparison project (CMIP)-class earth system model of the Japan Meteorological Agency/Meteorological Research Institute. This experiment has three purposes: first is to assess the ability of our model with the Coordinated Ocean–ice Reference Experiments (COREs) forcing in reproducing the present ocean-climate; second is to understand the ocean-climate variability for the past 60 years; third is to present an example of evaluating an ocean–ice interannual variability simulation. The Pacific Ocean is focused on for the last two purposes. After integrating for about 1500 years with repeated use of a detrended CORE interannual forcing, the model reaches a quasi-steady state where the present climate is reproduced satisfactorily. Then, the interannual variability simulation is conducted with the retrieved forcing trend and the result is analyzed. The simulation is successful at reproducing the long-term variability in the Pacific and surrounding oceans. Brief analyses of the tropical and mid-latitude upper layer, deep circulation, and the Arctic sea ice are presented. A caveat in treating other parts of the globe is due to the recent intense convection in the Southern Ocean caused by a remarkably increasing trend of the Southern Hemisphere westerly. Overall, the current simulation with our CMIP-class ocean–ice model is shown to be useful for studying the present ocean-climate variability, specifically in the Pacific sector. It could also be used as a benchmark control experiment that facilitates further research, model development, and intercomparison.  相似文献   
63.
64.
Causes of large-scale landslides in the Lesser Himalaya of central Nepal   总被引:1,自引:0,他引:1  
Geologically and tectonically active Himalayan Range is characterized by highly elevated mountains and deep river valleys. Because of steep mountain slopes, and dynamic geological conditions, large-scale landslides are very common in Lesser and Higher Himalayan zones of Nepal Himalaya. Slopes along the major highways of central Nepal namely Prithvi Highway, Narayangadh-Mugling Road and Tribhuvan Highway are considered in this study of large-scale landslides. Geologically, the highways in consideration pass through crushed and jointed Kathmandu Nappe affected by numerous faults and folds. The relict large-scale landslides have been contributing to debris flows and slides along the highways. Most of the slope failures are mainly bechanced in geological formations consisting phyllite, schist and gneiss. Laboratory test on the soil samples collected from the failure zones and field investigation suggested significant hydrothermal alteration in the area. The substantial hydrothermal alteration in the Lesser Himalaya during advancement of the Main Central Thrust (MCT) and thereby clay mineralization in sliding zones of large-scale landslide are the main causes of large-scale landslides in the highways of central Nepal. This research also suggests that large-scale landslides are the major cause of slope failure during monsoon in the Lesser Himalaya of Nepal. Similarly, hydrothermal alteration is also significant in failure zone of the large-scale landslides. For the sustainable road maintenance in Nepal, it is of utmost importance to study the nature of sliding zones of large-scale landslides along the highways and their role to cause debris flows and slides during monsoon period.  相似文献   
65.
General circulation models (GCMs) fitted with stable isotope schemes are widely used to interpret the isotope–climate relationship. However, previous studies have found that the spatiotemporal isotope/precipitation correlation simulated by GCMs is stronger and more widespread than the observed value. To understand the reason for this failure, we investigated the factors influencing the empirically well-known isotope/precipitation relationship, or precipitation amount effect, in the tropics using newly obtained daily precipitation isotope monitoring data over Asia. As in previous studies, we found an apparent correlation between the long-term monthly mean isotopic content and the corresponding precipitation amount (local precipitation) observed at sub-tropical island stations. Furthermore, on a monthly timescale, the isotopic variability of precipitation for these stations was more clearly related to the regional precipitation amount than to local precipitation. This correlation of isotopic content with the regional precipitation amount was observed at the equatorial (Maritime Continent) stations. For these stations, isotope/local precipitation relationships only appeared over longer timescales, with different regression line slopes at each station. However, at the coastal stations, there was a strong linear relationship between the monthly mean isotopic content and corresponding regional precipitation, and regression line slopes were spatially uniform. For the two sub-tropical terrestrial (Indochina Peninsula) stations, the isotopic minimum appeared without any relationship to rainfall amount but usually occurred at the leeward station during the rainy season. These results suggest that the isotopic variations of precipitation did not depend on the ’local’ rain-out history but on the rain-out process in the surrounding region. However, local rainfall events were associated not only with large-scale disturbances but also with regional circulation. Thus, the scale difference of controlling factors between local rainfall amount and isotopic value results in the weakening of the rainfall amount effect at the observation site and in the discrepancy between GCM simulations and observations. This finding suggests that regional precipitation–isotope relationships should be compared with GCM results. Additionally, because the isotope signal reflects the rain-out history at a regional scale, evaluation of the isotopic field using isotopic GCMs will be useful not only to reconstruct paleoclimate conditions but also to examine how GCMs can reproduce real atmospheric circulation over the tropics.  相似文献   
66.
67.
Predictors of seismic structural demands (such as inter‐storey drift angles) that are less time‐consuming than nonlinear dynamic analysis have proven useful for structural performance assessment and for design. Luco and Cornell previously proposed a simple predictor that extends the idea of modal superposition (of the first two modes) with the square‐root‐of‐sum‐of‐squares (SRSS) rule by taking a first‐mode inelastic spectral displacement into account. This predictor achieved a significant improvement over simply using the response of an elastic oscillator; however, it cannot capture well large displacements caused by local yielding. A possible improvement of Luco's predictor is discussed in this paper, where it is proposed to consider three enhancements: (i) a post‐elastic first‐mode shape approximated by the deflected shape from a nonlinear static pushover analysis (NSPA) at the step corresponding to the maximum drift of an equivalent inelastic single‐degree‐of‐freedom (SDOF) system, (ii) a trilinear backbone curve for the SDOF system, and (iii) the elastic third‐mode response for long‐period buildings. Numerical examples demonstrate that the proposed predictor is less biased and results in less dispersion than Luco's original predictor. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
68.
Abstract Electron spin resonance (ESR) analyses of quartz grains in fault gouge were performed for a core sample taken from the Nojima Fault that moved during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake). Distribution of radiation-induced defects in the gouge at a depth of 389.4 m was measured by extracting quartz grains from seven discrete positions within 30 mm of the fault plane on the granite side. The decrease in E'1 and Al centers was observed within 2 mm of the fault plane, suggesting partial annealing due to faulting. Partial annealing even at that depth suggested that conventional ESR dating, which is based on the hypothesis of complete annealing during faulting, was not applicable. Theoretical calculations of the temperature rise and of the thermal annealing of defects have been made by assuming a simple annealing model of heat generation on the fault plane. Thermal energy was calculated to have been approximately 8 MJ/m2 to explain the profile of the heat-affected region. Thermal energy was much larger than the one estimated from hydrothermal solution, and corresponded to the frictional heat calculated for a normal stress of 20 MPa, a displacement of 2 m, and a frictional coefficient of 0.2.  相似文献   
69.
Abstract. Northern Honshu is the most important area for mineral and oil resources in Japan. Many kuroko deposits and oil and gas fields are distributed in two belts along the northeast Japan arc, the kuroko metal‐belt on the Pacific side and the oil‐belt on the Sea of Japan side. The kuroko deposits are located mainly in the Green Tuff strata which formed as a result of submarine vol‐canism during the late Miocene and Pliocene. Most of the source rocks of the oil and gas deposits formed at the same time as the kuroko deposits and some of them are located in reservoirs of hydrothermally‐altered volcanic rocks in the Green Tuff region. There is general agreement that the kuroko deposits formed as a result of submarine hydrothermal and magmatic activity whereas almost all petroleum geologists and geochemists consider that hydrocarbon deposits were generated independently of such activity. Since the discovery of hydrothermally‐generated petroleum in the Guaymas Basin, Gulf of California, however, it is clear that petroleum can be formed almost instantaneously in terrestrial and submarine hydrothermal areas. The paleo‐northeastern Sea of Japan is therefore considered to be a potential area for hydrothermal petroleum generation because thick organic‐rich sediments overlie an active submarine volcanic area. Several lines of geological and geochemical evidence suggest the possibility of hydrothermally‐enhanced maturation of organic matter and the contribution of magmatic activity to the formation of these deposits. Although most of the oil and gas in northern Honshu has been generated conventionally as a consequence of the high geothermal gradients there, it appears that some of the oil and gas fields may have formed as a result of extensive hydrothermal and magmatic activity during the late Miocene to Pliocene. Because of the much steeper angle of the faults in the vicinity of the Hokuroku basin than in the Akita basin, the magmatic contribution to the kuroko mineralization would have been far greater than to the oil and gas deposits of the Niigata and Akita basins. We therefore propose a strong relationship between metal and oil and gas generation in northern Honshu based on the structure and tectonics of the northern Honshu arc‐backarc system.  相似文献   
70.
 The charge density and bond character of the rutile-type structure of SiO2 (stishovite) under compression to 30 GPa were investigated by X-ray diffraction study using synchrotron radiation and AgKα rotating anode X-ray generator through a newly devised diamond-anvil cell. The valence electron density was determined by least-squares refinement including the κ parameter and the electron population in the X-ray atomic scattering parameters. The oxygen κ-parameter of SiO2 is 0.94 under ambient conditions and 1.11 at 29.1 GPa and the silicon valence changes from +2.12(8) at ambient pressure to +2.26(15) at 29.1 GPa. These values indicate that the electron distributions are more localized with increasing pressure. The difference Fourier map shows the deformation of the valence electron distribution and the bonding electron population in residual electron densities. The bonding electron observed from the X-ray diffraction study is interpreted by molecular orbital calculations. The deformation of SiO6octahedra and the bonding electron density of stishovite structures are elucidated from the overlapping electron orbits. The O–O distances of shared and unshared edge of SiO6 octahedra change with the cation ionicity. The repulsive force between the two cations in the adjacent octahedron makes its shared edge shorter. The pressure changes of the apical and equatorial Si–O interatomic distances are explained by the electron density of state (DOS) of Si and electron configuration. Received: 7 January 2002 / Accepted: 6 May 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号