首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
地球物理   18篇
地质学   22篇
海洋学   2篇
自然地理   1篇
  2022年   4篇
  2020年   4篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2008年   4篇
  2006年   1篇
  1994年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
11.
12.
Acta Geotechnica - Fabric anisotropy and fines content (fc) in sands modify significantly their mechanical behaviour, particularly as related to static liquefaction under undrained conditions. The...  相似文献   
13.
SANISAND is the name of a family of bounding surface plasticity constitutive models for sand within the framework of critical state theory, which have been able to realistically simulate the sand behavior under conventional monotonic and cyclic loading paths. In order to incorporate the important role of evolving fabric anisotropy, one such model was modified within the framework of the new anisotropic critical state theory and named SANISAND-F model. Yet the response under continuous stress principal axes rotation requires further modification to account for the effect of ensuing noncoaxiality on the dilatancy and plastic modulus. This modification is simpler than what is often proposed in the literature, since it does not incorporate an additional plastic loading mechanism and/or multiple dilatancy and plastic modulus expressions. The new model named SANISAND-FN is presented herein and is validated against published data for loading that includes drained stress principal axes rotation on Toyoura sand.  相似文献   
14.
This paper revisits the seminal work of Seed and Booker (1977) [21] on the design of infinitely permeable drains for liquefaction mitigation. It is shown that their basic mathematical assumption for the rate of earthquake-induced excess pore pressure generation overlooks sand fabric evolution effects during cyclic loading and eventually leads to underestimation of the drain effectiveness. This is because such effects cause peak excess pore pressures to be attained at the early stages of partially drained shaking, followed by a gradual attenuation even if shaking continues undiminished, a response feature not predicted by the original formulation. In addition, special emphasis is given to the analytical relation describing the excess pore pressure build-up until liquefaction in undrained tests. This relation was considered unique in the original work, for reasons of simplicity, thus neglecting sand fabric evolution effects that may differentiate it for various sands, densities and loading conditions. Hence, a revised analytical formulation is proposed, which takes into account both above effects of sand fabric evolution. The paper provides a quantitative assessment of their influence on drain effectiveness and establishes a new set of charts for drain design. Experimental measurements from shaking table tests, as well as robust numerical simulations are shown, which underline the necessity for the revised solution and design charts.  相似文献   
15.
We overview studies of the natural variability of past climate, as seen from available proxy information, and its attribution to deterministic or stochastic controls. Furthermore, we characterize this variability over the widest possible range of scales that the available information allows, and we try to connect the deterministic Milankovitch cycles with the Hurst–Kolmogorov (HK) stochastic dynamics. To this aim, we analyse two instrumental series of global temperature and eight proxy series with varying lengths from 2 thousand to 500 million years. In our analysis, we use a simple tool, the climacogram, which is the logarithmic plot of standard deviation versus time scale, and its slope can be used to identify the presence of HK dynamics. By superimposing the climacograms of the different series, we obtain an impressive overview of the variability for time scales spanning almost nine orders of magnitude—from 1 month to 50 million years. An overall climacogram slope of ?0.08 supports the presence of HK dynamics with Hurst coefficient of at least 0.92. The orbital forcing (Milankovitch cycles) is also evident in the combined climacogram at time scales between 10 and 100 thousand years. While orbital forcing favours predictability at the scales it acts, the overview of climate variability at all scales suggests a big picture of irregular change and uncertainty of Earth’s climate.  相似文献   
16.
Loading direction-dependent strength of sand has been traditionally characterized in the principal stress space as a direct extension of the Mohr–Coulomb criterion. A recent study found that it is more appropriate to define anisotropic strength of sand on failure/shear planes, but this proposition has only been demonstrated with discrete element method (DEM) simulations. The present study experimentally investigates anisotropic shear strength of sands in this new framework. Three granular materials with distinct grain characteristics ranging from smooth and rounded particles to flaky and angular particles are tested with the bedding plane inclination angle ψ b varying over the full range of 0°–180°. The main objective is to study how the peak friction angle ? p of sand is affected by the ψ b angle and how the ψ b? p relationship evolves with the change of characteristics of constituent sand particles. We find that the general trend of ψ b? p curves for real sands resembles what was predicted by DEM in a previous study, whereas rich anisotropic strength behavior is revealed by the laboratory data. The effects of normal stress and initial density, as well as shear dilation behavior at different shear directions, are also studied.  相似文献   
17.
In this paper, we employed optically stimulated luminescence (OSL) dating of sediments from two archaeological sites located in Navarino, Messenia, southwestern Greece, to deduce a chronology for the archaeological sites. Archaeological surveys identified two Paleolithic sites on fossilized coastal dunes. Chipped stone tool assemblages were identified eroding out of paleosols developed in the dunes. The assemblage from one site lacked distinct typological features and hence it was difficult to assign to a chronological period. The lithic assemblage from the other site contained artifacts that typologically can be assigned to the Levallois‐Mousterian. Previous efforts to date the artifact‐bearing sediments at these sites were unsuccessful. Using newer OSL dating methods (i.e., the Single‐Aliquot‐Regenerated Dose protocol and thermally transferred‐OSL[TT‐OSL]), we attempted to construct a chronological framework for Late Pleistocene human activity in the southwest Peloponnese. The revised OSL chronology for the first site is 28 ± 5 ka, while a luminescence age of 8 ± 1 ka for the second site only represents a later deflation event. Within the framework of Quaternary environmental change, the location of Paleolithic sites relative to the coast would have changed during the course of the Pleistocene. As a result, Paleolithic exploitation strategies would have been strongly influenced by the changing coastal geomorphology, encouraging hominids to adapt to new distributions of resources. OSL dating of the archaeological sites allowed us to connect traces of hominid activity with climatic stadials/interstadials of the later Pleistocene derived from existing relative sea‐level curves. Ultimately, these data permitted the reconstruction of regional Late Pleistocene paleogeography. © 2012 Wiley Periodicals, Inc.  相似文献   
18.
The political dimension of water becomes highly important not only because of its scarcity, but also as a result of its sharing across national boundaries. Approximately 40% of the global population lives in transboundary water basins, 55% of which are located in Europe, emphasizing the need for cooperation and harmonization of policies. In order to better handle major water problems Europe have adopted the new EU Water Framework Directive 2000/60 the implementation of which is further discussed. Especially in Greece, management of transboundary rivers is of major importance, since roughly 25% of the country’s renewable resources are “imported”. However, lack of integrated approaches and legal agreements as well as administrative shortcomings, make transboundary cooperation and management a hard task. This study refers to 4 shared basins in Northern Greece and demonstrates the problems that occur for their sustainable management.  相似文献   
19.
The strength anisotropy of granular materials deposited under gravity has mostly been attributed to elongated particles' tendency to align long axes along the bedding plane direction. However, recent experiments on near‐spherical glass beads, for which preferred particle alignment is inapplicable, have exhibited surprisingly strong strength anisotropy. This study tests the hypothesis that certain amount of fabric anisotropy caused by the anisotropic stress during deposition under gravity can be locked in a circular‐particle deposit. Such locked‐in fabric anisotropy can withstand isotropic consolidation and leads to significant strength anisotropy. 2D discrete element method simulations of direct shear tests on circular‐particle deposits are conducted in this study, allowing for the monitoring of both stress and fabric. Simulations on both monodispersed and polydispersed circular‐particle samples generated under downward gravitational acceleration exhibit clear anisotropy in shear strength, thereby proving the hypothesis. When using contact normal‐based and void‐based fabric tensors to quantify fabric anisotropy in the material, we find that the intensity of anisotropy is discernible but low prior to shearing and is dependent on the consolidation process and the dispersity of the sample. The fact that samples with very low anisotropy intensity measurements still exhibit fairly strong strength anisotropy suggests that current typical contact normal‐based and void‐based second‐order fabric tensor formulations may not be very effective in reflecting the anisotropic peak shear strength of granular materials. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
20.
This study focuses on non‐coaxial flow behavior of cohesionless soil undergoing cyclic rotational shear, with a special interest in the effects of particle‐scale characteristics. To this end, we perform a series of 2D discrete element simulations with various particle shapes, inter‐particle coefficient of friction, initial density, and stress ratios. The validity and efficacy of the numerical model is established by systematically comparing numerical simulation results with existing laboratory testing results. Such comparison shows that the numerical simulations are capable of capturing mechanical behavior observed in laboratory testing under rotational shear. We further demonstrate and quantify a strong yet simple relationship between the deviatoric part of the normalized strain increment and the non‐coaxial angle, denoted by and ψ, respectively. This quantitative correlation between ψ and is independent of applied stress ratio, initial and current void ratio, and the number of cycles applied, but dependent on the principal stress orientation and particle‐scale characteristics. At the same , specimens with higher inter‐particle friction angle or smaller particle aspect ratio show greater non‐coaxial angles. A simple model is able to fit this ψ‐ relationship well, which provides a useful relationship that can be exploited in developing constitutive models for rotational shearing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号