首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   16篇
  国内免费   5篇
测绘学   4篇
大气科学   14篇
地球物理   71篇
地质学   79篇
海洋学   51篇
天文学   37篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   11篇
  2016年   8篇
  2015年   13篇
  2014年   6篇
  2013年   7篇
  2012年   13篇
  2011年   7篇
  2010年   18篇
  2009年   17篇
  2008年   15篇
  2007年   14篇
  2006年   17篇
  2005年   18篇
  2004年   6篇
  2003年   12篇
  2002年   13篇
  2001年   12篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有265条查询结果,搜索用时 46 毫秒
101.
井-地与井间电位技术联合数值模拟研究剩余油分布(英文)   总被引:5,自引:2,他引:3  
电法测井有很高的分辨率,但是它的探测半径仅限于井孔周围;井-地电位技术虽然可以探测到足够大的范围,但是它的分辨率却受到很大的限制,特别是对于油水分布或者结构复杂的储层。本文试图通过井-地电位技术和井间电位技术的联合来研究地下储层油水分布范围。具体方法是,采用井-地电位技术研究油水分布在在横向上的展布情况,利用井间电位技术研究油水储层在垂向上的分布,然后采用井间电位结果标定井地电位结果,两者结合提高纵向分辨率,从而确定剩余油的三维空间分布。研究中通过研究注水初期数值模拟结果与水淹期数值模拟结果之差,求取剩余油分布范围。有限差分方法数值模拟表明:井-地电位技术与井间电位技术联合方法可以有效地确定剩余油分布。  相似文献   
102.
Utilization of cheap renewable carbon feedstock for polyhydroxyalkanoate (PHA) production not only brings down its production cost but also ensures sustainability. The scope of this study was to evaluate the potential of sap extracted from felled oil palm trunk (OPT) as a novel inexpensive renewable carbon source for PHA production. OPT sap was found to be nutritionally rich and contained various fermentable sugars (5.5% w/v) as its major constituent. Termite gut isolate, Bacillus megaterium MC1 grew profoundly in mineral medium with OPT sap as carbon source and a cell density of 10.9 g/L was attained after 16 h of cultivation in shake flask cultures. A maximum poly‐3‐hydroxybutyrate [P(3HB)] content (% cell dry weight; CDW) of 30 wt% and a P(3HB) concentration of 3.28 g/L was recorded. Additionally, OPT sap extracted from younger tree trunks with prolonged storage had higher sugar content (10.8% w/v) and, when used as a growth medium without the addition of any nutrients, supported bacterial growth comparable to commercially available media.  相似文献   
103.
Rivers transport nutrients and suspended sediment matter (SSM) as well as fresh water from land to coastal regions, where the biological productivity is high. In the coastal area, the buoyancy of fresh water leads to the formation of horizontal anticyclonic gyres and vertical circulations, which affect the variation of biological production such as plankton blooms. However, the primary production caused by the 3-D dynamics have not been quantitatively discussed, and observations can hardly capture the daily temporal variations of phytoplankton blooms. We developed an ocean general circulation model including a simple ecosystem model, to investigate the 3-D and temporal changes in phytoplankton blooms caused by riverine input such as flooding. The distribution patterns of nutrients and phytoplankton differ significantly from that of fresh water. The phytoplankton maxima shift from the downstream (right-hand side of the river mouth) to the upstream regions (left-hand side of the river mouth). The shift that occurs is categorized by the different nitrate origins: (1) river-originated nitrate is dominant in the downstream region; (2) subsurface-originated nitrate is dominant in the upstream region, and is transported by upwelling associated with vertical circulation and horizontal anticyclonic gyre; and (3) regenerated nitrate is dominant in the upstream region. The total primary production in phytoplankton blooms is maintained not only by river-originated nitrate but also by subsurface-originated nitrate that is 1.5 times larger than the river-originated. Several case studies (e.g., including SSM) were conducted in this study.  相似文献   
104.
The degree of gas hydrate saturation at Integrated Ocean Drilling Program (IODP) Site C0002 in the Kumano Basin, Nankai Trough, was estimated from logging‐while‐drilling logs and core samples obtained during IODP Expeditions 314 and 315. Sediment porosity data necessary for the calculation of saturation were obtained from both core samples and density logs. Two forms of the Archie equation (‘quick‐look’ and ‘standard’) were used to calculate gas hydrate saturation from two types of electrical resistivity log data (ring resistivity and bit resistivity), and a three‐phase Biot‐type equation was used to calculate gas hydrate saturation from P‐wave velocity log data. The gas hydrate saturation baseline calculated from both resistivity logs ranges from 0% to 35%, and that calculated from the P‐wave velocity log ranges from 0% to 30%. High levels of gas hydrate saturation (>60%) are present as spikes in the ring resistivity log and correspond to the presence of gas hydrate concentrations within sandy layers. At several depths, saturation values obtained from P‐wave velocity data are lower than those obtained from bit resistivity data; this discrepancy is related to the presence of free gas at these depths. Previous research has suggested that gas from deep levels in the Kumano Basin has migrated up‐dip towards the southern and seaward edge of the basin near Site C0002. The high saturation values and presence of free gas at site C0002 suggest that a large gas flux is flowing to the southern and seaward edge of the basin from a deeper and/or more landward part of the Kumano Basin, with the southern edge of the Kumano Basin (the location of site C0002) being the main area of fluid accumulation.  相似文献   
105.
The Raman spectra of carbonaceous material (CM) from 19 metasediment samples collected from six widely separated areas of Southwest Japan and metamorphosed at temperatures from 165 to 655°C show systematic changes with metamorphic temperature that can be classified into four types: low‐grade CM (c. 150–280°C), medium‐grade CM (c. 280–400°C), high‐grade CM (c. 400–650°C), and well‐crystallized graphite (> c. 650°C). The Raman spectra of low‐grade CM exhibit features typical of amorphous carbon, in which several disordered bands (D‐band) appear in the first‐order region. In the Raman spectra of medium‐grade CM, the graphite band (G‐band) can be recognized and several abrupt changes occur in the trends for several band parameters. The observed changes indicate that CM starts to transform from amorphous carbon to crystallized graphite at around 280°C, and this transformation continues until 400°C. The G‐band becomes the most prominent peak at high‐grade CM suggesting that the CM structure is close to that of well‐crystallized graphite. In the highest temperature sample of 655°C, the Raman spectra of CM show a strong G‐band with almost no recognizable D‐band, implying the CM grain is well‐crystallized graphite. In the Raman spectra of low‐ to medium‐grade CM, comparisons of several band parameters with the known metamorphic temperature show inverse correlations between metamorphic temperature and the full width at half maximum (FWHM) of the D1‐ and D2‐bands. These correlations are calibrated as new Raman CM geothermometers, applicable in the range of c. 150–400°C. Details of the methodology for peak decomposition of Raman spectra from the low to medium temperature range are also discussed with the aim of establishing a robust and user‐friendly geothermometer.  相似文献   
106.
Isolated-type tremors having two events with different dominant frequencies are characteristic seismological phenomena observed during the fumarolic activity stage at Aso Volcano. These isolated tremors are called hybrid tremors (HBT) and comprise two parts: an initial part named the “HF-part” with a dominant frequency in the high-frequency region (approximately 10 Hz) and the following part named the “LF-part” with a dominant frequency in the low-frequency region (approximately 2 Hz). The LF-part is observed after the HF-part, and the HBT is accompanied by a long-period tremor (LPT). Hypocenters and source parameters are estimated using seismograms recorded at 64 stations around Nakadake crater. The amplitude distributions of all HF-parts have almost similar trends. Similarly, the amplitude distributions of all LF-parts have almost similar trends. However, the amplitude distributions of HF- and LF-parts are not similar. From these results, we proposed that the hypocenters and source parameters of HF- and LF-parts are not common, but each of them have common hypocenters and source parameters. The hypocenter region of HF-parts was estimated to be just beneath the fumarole region south of the 1st crater: the volume fluctuation is the major source factor. The hypocenter region of LF-parts is estimated to be at a depth of approximately 300 m beneath the first crater: the strike–slip component is the major source parameter. The hypocentral depth of LF-parts is located at the upper end of the crack estimated to be the source of the LPTs. The LPTs and HBTs are observed almost simultaneously. We consider that volcanic fluid is involved in the source mechanisms of both HBT and LPT.  相似文献   
107.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   
108.
A mud volcano LUSI initiated its eruption on 29 May 2006, adjacent to a hydrocarbon exploration well in East Java. Ground subsidence in the vicinity of the LUSI eruptive vent was well recorded by a Synthetic Aperture Radar (SAR) PALSAR onboard the Japanese ALOS satellite. We apply an Interferometric SAR (InSAR) technique on ten PALSAR data scenes, acquired between 19 May 2006 and 21 May 2007, in order to obtain continuous maps of ground displacements around LUSI. Although the displacements in the area closest to the eruptive vent (spatial extension of about 1.5 km) are not detectable because of the erupted mud, all the processed interferograms indicate subsidence in an ellipsoidal area of approximately 4 km (north–south) × 3 km (east–west), centered at the main eruptive vent. In particular, interferograms spanning the first four months until 4 Oct. 2006 and the subsequent 46 days between 4 Oct. 2006 and 19 Nov. 2006 show at least about 70 cm and 80 cm of displacements away from the satellite, respectively. Possible causes of the subsidence, i.e., 1) loading effect of the erupted mud, 2) creation of a cylindrical mud conduit, and 3) pressure decrease and depletion of materials at depth, are investigated. The effects of the first two causes are found to be insufficient to explain the total amount of subsidence observed in the first six months. The third possibility is quantitatively examined using a boundary element approach by modeling the source of deformation as a deflating oblate spheroid. The spheroid is estimated to lie at depths of a few hundred to a thousand meters. The estimated depths are significantly shallower than determined from analyses of erupted mud samples; the difference is explained by presence of significant amount of inelastic deformation including compaction and downward transfer of material.  相似文献   
109.
110.
We used time-series sediment trap data for four major components, organic matter and ballast minerals (CaCO3, opal, and lithogenic matter) from 150, 540, and 1000 m in the western subarctic Pacific (WSAP), where opal is the predominant mineral in sinking particles, to develop four simple models for settling particles, including the “ballast model”. The ballast model is based on the concept that most of the organic matter “rain” in the deep sea is carried by the minerals. These four models are designed to simultaneously reproduce the flux of each major component of settling particles at 540 and 1000 m by using the data for each component at 150 m as initial values. Among the four models, the ballast model, which considers the sinking velocity increase with depth, was identified as the best using the Akaike information criterion as a measure of the model fit to data. This model successfully reproduced the flux of organic matter at 540 and 1000 m, indicating that the ballast model concept works well in the shallow zone of the WSAP on a seasonal timescale. This also suggests that ballast minerals not only physically protect the organic matter from degradation during the settling process but also enhance the sinking velocity and reduce the degree of decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号