首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   8篇
  国内免费   6篇
测绘学   3篇
大气科学   29篇
地球物理   128篇
地质学   137篇
海洋学   101篇
天文学   107篇
综合类   5篇
自然地理   28篇
  2021年   5篇
  2020年   4篇
  2019年   14篇
  2018年   7篇
  2017年   10篇
  2016年   15篇
  2015年   8篇
  2014年   15篇
  2013年   19篇
  2012年   15篇
  2011年   20篇
  2010年   21篇
  2009年   28篇
  2008年   29篇
  2007年   35篇
  2006年   22篇
  2005年   20篇
  2004年   21篇
  2003年   12篇
  2002年   18篇
  2001年   18篇
  2000年   12篇
  1999年   5篇
  1998年   7篇
  1997年   7篇
  1996年   11篇
  1995年   12篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   10篇
  1984年   3篇
  1983年   12篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   9篇
  1975年   7篇
  1973年   9篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
排序方式: 共有538条查询结果,搜索用时 31 毫秒
501.
The present study aims to develop a hybrid multi‐model using the soft computing approach. The model is a combination of a fuzzy logic, artificial neural network (ANN) and genetic algorithm (GA). While neural networks are low‐level computational structures that perform well dealing with raw data, fuzzy logic deal with reasoning on a higher level by using linguistic information acquired from domain experts. However, fuzzy systems lack the ability to learn and cannot adjust themselves to a new environment. Moreover, experts occasionally make mistakes and thus some rules used in a system may be false. A network type structure of the present hybrid model is a multi‐layer feed‐forward network, the main part is a fuzzy system based on the first‐order Sugeno fuzzy model with a fuzzification and a defuzzification processes. The consequent parameters are determined by least square method. The back‐propagation is applied to adjust weights of network. Then, the antecedent parameters of the membership function are updated accordingly by the gradient descent method. The GA was applied to select the fuzzy rule. The hybrid multi‐model was used to forecast the flood level at Chiang Mai (under the big flood 2005) and the Koriyama flood (2003) in Japan. The forecasting results are evaluated using standard global goodness of fit statistic, efficient index (EI), the root mean square error (RMSE) and the peak flood error. Moreover, the results are compared to the results of a neuro‐genetic model (NGO) and ANFIS model using the same input and output variables. It was found that the hybrid multi‐model can be used successfully with an efficiency index (EI) more than 0·95 (for Chiang Mai flood up to 12 h ahead forecasting) and more than 0·90 (for Koriyama flood up to 8 h ahead forecasting). In general, all of three models can predict the water level with satisfactory results. However, the hybrid model gave the best flood peak estimation among the three models. Therefore, the use of fuzzy rule base, which is selected by GA in the hybrid multi‐model helps to improve the accuracy of flood peak. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
502.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
503.
504.
The phase relations of Fe-6.4 wt% Si and Fe-9.9 wt% Si have been investigated up to 130 GPa and 2,600 K based on in situ synchrotron X-ray diffraction measurements in a laser-heated diamond-anvil cell along with chemical analysis of the quenched samples using a field-emission electron probe microanalyzer. We found that the maximum solubility of silicon in solid hcp-iron increases with increasing pressure. Linear extrapolation of the phase boundary between hcp + B2 and hcp phases for Fe-9.9 wt% Si suggests that the solid hcp-iron can include more than 9.9 wt% Si at the Earth’s inner-core conditions. If silicon is a major light element in the outer core, a substantial amount of silicon may be incorporated into the inner core during inner-core solidification.  相似文献   
505.
Partitioning of oxygen and silicon between molten iron and (Mg,Fe)SiO3 perovskite was investigated by a combination of laser-heated diamond-anvil cell (LHDAC) and analytical transmission electron microscope (TEM) to 146 GPa and 3,500 K. The chemical compositions of co-existing quenched molten iron and perovskite were determined quantitatively with energy-dispersive X-ray spectrometry (EDS) and electron energy loss spectroscopy (EELS). The results demonstrate that the quenched liquid iron in contact with perovskite contained substantial amounts of oxygen and silicon at such high pressure and temperature (P–T). The chemical equilibrium between perovskite, ferropericlase, and molten iron at the P–T conditions of the core–mantle boundary (CMB) was calculated in Mg–Fe–Si–O system from these experimental results and previous data on partitioning of oxygen between molten iron and ferropericlase. We found that molten iron should include oxygen and silicon more than required to account for the core density deficit (<10%) when co-existing with both perovskite and ferropericlase at the CMB. This suggests that the very bottom of the mantle may consist of either one of perovskite or ferropericlase. Alternatively, it is also possible that the bulk outer core liquid is not in direct contact with the mantle. Seismological observations of a small P-wave velocity reduction in the topmost core suggest the presence of chemically-distinct buoyant liquid layer. Such layer physically separates the mantle from the bulk outer core liquid, hindering the chemical reaction between them.  相似文献   
506.
Torita  Hiroyuki  Tanaka  Norio 《Natural Hazards》2019,96(3):1141-1152
Natural Hazards - Coastal forests can protect coastal areas from the effects of tsunamis. However, the coastal forests of Tohoku were destroyed by the Great East Japan Tsunami, which was triggered...  相似文献   
507.
Sample decomposition using inverse aqua regia at elevated temperatures and pressures (e.g., Carius tube or high‐pressure asher) is the most common method used to extract highly siderophile elements (HSEs: Ru, Rh, Pd, Re, Os, Ir, Pt and Au) from geological samples. Recently, it has been recognised that additional HF desilicification is necessary to better recover HSEs, potentially contained within silicate or oxide minerals in mafic samples, which cannot be dissolved solely by inverse aqua regia. However, the abundance of interfering elements tends to increase in the eluent when conventional ion‐exchange purification procedures are applied to desilicified samples. In this study, we developed an improved purification method to determine HSEs in desilicified samples. This method enables the reduction of the ratios of isobaric and polyatomic interferences, relative to the measured intensities of HSE isotope masses, to less than a few hundred parts per million. Furthermore, the total procedural blanks are either comparable to or lower than conventional methods. Thus, this method allows accurate and precise HSE measurements in mafic and ultramafic geological samples, without the need for interference corrections. Moreover, the problem of increased interfering elements, such as Zr for Pd and Cr for Ru, is circumvented for the desilicified samples.  相似文献   
508.
The Utanobori gold deposit is a low‐sulfidation, epithermal vein‐type deposit located in northern Hokkaido, Japan. The deposit is hosted by conglomerate, sandstone, and tuff of the Middle to Late Miocene Esashi Formation. These rocks were hydrothermally altered. Silica sinters and quartz‐adularia veins are common in the deposit. The quartz‐adularia veins either contain a ginguro band, which corresponds to the main gold‐bearing vein (Type 1 Veins), or do not contain a ginguro band but contain minor adularia (Type 2 Veins). Type 1 Veins are divided into three stages with 12–14 substages. Ore minerals identified include electrum, naumannite, chlorargyrite, bromargyrite, an unidentified Fe‐Sb mineral, and an Fe‐(Sb)‐As mineral. These ore minerals formed in the main mineralization stages I (bands I‐b and I‐d) and II (band II‐a). Scanning electron microscopy with cathodoluminescence images show that cathodoluminescence‐dark microcrystalline quartz exhibiting colloform (ghost‐sphere) texture is closely associated with ore minerals in the Type 1 Vein and Type 2 Vein, and the Al and K contents of such quartz are commonly >1000 ppm. This indicates that the ore minerals were crystallized from alkaline, silica‐saturated fluids at temperatures <200°C, which initially deposited amorphous silica that was recrystallized to microcrystalline quartz. The average Au content of electrum is 52.5 at% Au (n = 10), 65.7 at% Au (n = 20), and 55.5 at% Au (n = 5) in bands I‐b, I‐d, and II‐a, respectively, of Type 1 Veins. The δ34SCDT values of two fine‐grained disseminated pyrites in the altered conglomerate and bedded tuff in the argillic altered zone are ?4.3 and ?4.2‰. Ar‐Ar dating on adularia yielded 13.6 ± 0.06 Ma, 13.6 ± 0.07 Ma, and 13.6 ± 0.06 Ma for the stages I, II, and III of the Type 1 Vein, respectively. K‐Ar ages determined on adularia in the silica sinter and on whole‐rock of glassy rhyolite of the Esashi Formation are 15.0 ± 0.4 Ma and 14.6 ± 0.4 Ma, respectively. These radiometric ages indicate that silica sinter associated with the rhyolitic volcanic rocks formed prior to the main gold mineralization.  相似文献   
509.
In the austral summer of 2006–2007, the 48th Japanese Antarctic Research Expedition (JARE-48) installed two unmanned low-power magnetometers to form a closely spaced magnetometer network in combination with the permanent sites at Japan's Syowa Station in Antarctica. To identify field line resonances (FLRs), gradient methods are applied to the data from three adjacent sites in Antarctica and data from conjugate points in Antarctica and Iceland. By analyzing the data from the Antarctic and Icelandic sites individually, the structure of FLRs with high coherence is clearly identified. However, by analyzing the data from closely spaced Antarctic sites, it is more difficult to identify the signature of FLRs because of the inclusion of multiple signals related to the local geomagnetic pulsations over a broad frequency range. The frequency and resonance width of FLRs are determined by applying the amplitude phase gradient method (APGM) to the data from Antarctic sites. This yields the eigenfrequency as a continuous function of ground latitudes in the area surrounding Syowa Station. The mass density in the equatorial region at the L of the auroral zones is estimated from the obtained FLR frequency by numerically solving the standing Alfvén wave equation. The mass density thus obtained is consistent with observational results from previous in situ measurements by spacecraft. The results of the present study demonstrate that data from geomagnetic conjugate points are helpful in identifying FLR in cases in which the magnetometers are too close to each other to enable identification. Once FLR is identified, APGM can be applied to the identified FLR, yielding the FLR frequency as a continuous function of ground latitudes. Therefore, the magnetospheric equatorial mass density is readily estimated with high spatial resolution.  相似文献   
510.
Numerical experiments with a two-dimensional nonhydrostatic ocean model have been carried out to investigate the dynamical process of descending density current on a continental slope. The associated deep water formation has been also examined by tracking labeled particles. The descending flow along the continental slope occurs in the bottom Ekman layer. The net pressure gradient determining the volume transport consists of not only the pressure gradient due to density deviation but also the surface pressure gradient due to the depth-mean alongshore flow. Since these constituents have the opposite signs and strengthen each other, the oscillation with an alternation of intense up- and downslope flows appears around the shelf break. This temporal variation of the flow field causes the effective mixing on the slope between descending shelf and interior waters and forms the deep water as a mixture of them at a ratio of about 1:3. The present result is applied to the slope current around Antarctica, using velocity and density fields calculated by an ocean general circulation model. The Ekman volume transport is estimated at 0.97 Sv (1 Sv = 106 m3s–1) in the Weddell Sea, 0.35 Sv in the Ross Sea, and 1.8 Sv in total. About 70% of them is attributed to the depth-mean alongshore flow, such as the East Wind Drift and the Weddell Gyre driven by the wind. This suggests that the pressure gradient due to other factors than density deviation may play an important role in the deep and bottom water formation in the actual oceans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号