首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   6篇
  国内免费   8篇
测绘学   6篇
大气科学   9篇
地球物理   50篇
地质学   49篇
海洋学   52篇
天文学   18篇
综合类   5篇
自然地理   12篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   4篇
  2013年   10篇
  2012年   5篇
  2011年   15篇
  2010年   11篇
  2009年   6篇
  2008年   16篇
  2007年   10篇
  2006年   6篇
  2005年   6篇
  2004年   16篇
  2003年   12篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1976年   2篇
  1975年   1篇
  1970年   1篇
排序方式: 共有201条查询结果,搜索用时 31 毫秒
131.
We measured the concentration of non-sea-salt sulfate () in the Dome Fuji shallow ice core (Antarctica) from the surface to 40 m depth with the aim of dating the core with reference to the record of volcanic eruptions. Three huge spikes related to large-scale volcanic eruptions were detected at depths of 12.5, 29.9, and 38.8 m, correlated to the eruptions of Tambora (AD 1815), Kuwae (AD 1452) and an unknown event (AD 1259), respectively. We identified another nine spikes related to accurately dated eruption events. The shallow ice core was dated from AD 1260 to AD 2001 based on these 12 eruption events and the assumption of constant annual snow accumulation in the periods between eruption events. The results yield a maximum correction of ∼20 years compared with the dating proposed in a previous study. The annual accumulation varied within ±∼15% of the average water equivalent value over the study period (25.5 mm).  相似文献   
132.
We performed an extensive non-LTE analysis of the neutral sodiumlines of Na I 5683/5688, 5890/5896, 6154/6161, and 8183/8195 in disk/halo starsof types F-K covering a wide metallicity range (-4 [Fe/H] +0.4), using ourown data as well as data collected from the literature. For comparatively metal-rich disk stars (-1 [Fe/H] +0.4) where the weaker 6154/6161 lines are thebest abundance indicators, we confirmed [Na/Fe] ~ 0 with an "upturn" (i.e., ashallow/broad dip around -0.5 [Fe/H] 0) as already reported in previousstudies. For the metal-deficient halo stars, where the much stronger 5890/5896 or8183/8195 lines subject to considerable (negative) non-LTE corrections amountingto 0.5 dex have to be used, our analysis suggests mildly "subsolar" [Na/Fe] valuesdown to ~ -0.4 (with a somewhat large scatter of ~±0.2 dex) on the average at thetypical halo metallicity of [Fe/H] ~ -2, followed by a rise again to a near-solar ratioof [Na/Fe] ~ 0 at the very metal-poor regime [Fe/H] ~ -3 to -4. These resultsare discussed in comparison with the previous observational studies along with thetheoretical predictions from the available chemical evolution models.  相似文献   
133.
The role of the phase equilibrium of water in frost heave was studied for two kinds of soil. The rate of frost heave and the rate of water intake were measured simultaneously under various rates of heat removal. The experimental data revealed a trend common for both soils that the rate of water intake attains its maximum at a certain critical rate of heat removal. The data were analyzed by using equations accurately describing the relation between these rates. The results of the analysis indicate a serious doubt about the validity of phase equilibrium in the system. Alternatively, an assumption was introduced that supercooling occurred between a frost front and an unfrozen part of the soil. It was shown that supercooling could explain the data well under certain conditions.  相似文献   
134.
An equation accurately describing the rate of frost heave is derived by using the mixture theory of continuum mechanics. It is shown that the rate of frost heave is determined mainly by the rate of heat removal and the rate of water intake. When the phase equilibrium holds in the system, the relation between the rate of heat removal and the rate of water intake is shown to depend mainly on the phase composition data of a given medium.By studying reported experimental data, it is found that the phase equilibrium may hold until th rate of heat removal reaches a certain critical value. When the rate of heat removal exceeds this critical value, the phase equilibrium may possibly be disrupted for some media.  相似文献   
135.
In the current study, low-background γ-spectrometry was employed to determine the 228Ra/226Ra activity ratio and 137Cs activity of 84 coastal water samples collected at six sites along the main island of Japan (Honshu Island) within the Sea of Japan, including the Tsushima Strait, and two other representative sites on Honshu Island (a Pacific shore and the Tsugaru Strait) at 1-month intervals in 2006.The 228Ra/226Ra ratio of coastal waters in the Sea of Japan exhibited similar patterns of seasonal variation, with minimum values during early summer (228Ra/226Ra = 0.6–0.8), maximum values during autumn (228Ra/226Ra = 1.5–3), and a time lag in their temporal changes ( 2.5 months and over  1300 km distance). However, the 2 other sites represented no clear periodic variation.In contrast to the positive correlation between 137Cs activity (0.6–1.7 mBq/L) and salinity (15–35), the 228Ra/226Ra ratio of coastal water samples from the Sea of Japan was not observed to correlate with salinity, and the increase in the 228Ra/226Ra ratio was not as marked (0.5–1; May–June 2004 and 2005) during the migration along Honshu Island. The input of land-derived water and/or the diffusion of radium from coastal sediments is unlikely to have affected the wide seasonal variation in the 228Ra/226Ra ratio observed in these water samples.The seasonal variation in the 228Ra/226Ra ratio recorded for the coastal waters of the Sea of Japan is considered to be mainly controlled by the remarkable changes in the mixing ratio of the 228Ra-poor Kuroshio and the 228Ra-rich continental shelf waters within the East China Sea (ECS). After passing through the Tsushima Strait, this water mass moves northeast along the coastline of the Sea of Japan as the Tsushima Coastal Branch Current (TCBC).  相似文献   
136.
The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc‐alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back‐arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2–6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065–0.7085) and lower εNd(t) (?7.70 to ?4.35) than the MME of basaltic–dacitic composition (0.7044–0.7061 and ?0.53 to ?5.24), whereas most gray granites have intermediate chemical and Sr–Nd isotopic compositions (0.7061–0.7072 and ?3.75 to ?6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr–Nd–Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma–fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back‐arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI‐like composition, which plays an important role in the genesis of igneous rocks there.  相似文献   
137.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   
138.
Abstract In situ observations of the zircon-reidite transition in ZrSiO4 were carried out using a multianvil high-pressure apparatus and synchrotron radiation. The phase boundary between zircon and reidite was determined to be P (GPa) = 8.5+0.0017×(T-1200) (K) for temperatures between 1100–1900 K. When subducted slabs, including igneous rocks and sediments, descend into the upper mantle, the zircon in the subducted slab transforms into reidite at pressures of about 9 GPa, corresponding to a depth of 270 km. Reidite found in an upper Eocene impact ejecta layer in marine sediments is thought to have been transformed from zircon by a shock event. The peak pressure generated by the shock event in this occurrence is estimated to be higher than 8 GPa.Editorial responsibility: J. Hoefs  相似文献   
139.
140.
Fast time spectral measurements of a gamma-ray burst acquired with a satellite-borne cooled germanium spectrometer during the 18 December, 1972 event indicate significant spectral variations during the course of the event. These data are compared with the results of other exerimenters providing additional evidence for spectral variations on short time scales. The fast time spectra are also compared with spectral measurements obtained by others with accumulation periods longer than typical time widths of the structure in the intensity profile and particularly with spectra averaged over the entire duration of the burst event.Paper presented at the COSPAR Symposium on Fast Transients in X- and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号