首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
  国内免费   4篇
大气科学   9篇
地球物理   17篇
地质学   16篇
海洋学   10篇
天文学   33篇
  2016年   3篇
  2015年   1篇
  2013年   2篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1960年   1篇
  1957年   1篇
  1956年   2篇
  1955年   3篇
  1954年   1篇
  1953年   1篇
  1952年   3篇
  1951年   2篇
  1950年   1篇
排序方式: 共有85条查询结果,搜索用时 203 毫秒
51.
华北克拉通东部中生代岩浆岩的主要特征是岩石类型复杂(从辉长质到二长花岗质),显示高钾钙碱性、高Sr-Ba、高Sr/Y和La/Yb比值和高度富集的Sr-Nd同位素成分。锆石SHRIMP定年表明,太行山地区岩浆作用发生在138-127Ma之间。该年代结果与东亚其它地区已经发表的锆石年代数据揭示了中生代岩浆作用的发展具有从日本岛(和朝鲜半岛;210Ma),到胶辽半岛(180Ma),再到大别山-太行山(138Ma)的年轻化趋势。这暗示华北中生代岩浆作用可能与古太平洋板块的俯冲有关,但华北中生代岩浆岩似乎没有明显的向内陆方向的成分变化极性,可能与古太平洋板块在地幔过渡带的水平俯冲有关。地球化学数据表明,华北中生代岩浆岩可能主要形成于壳幔岩浆混合作用和随后的分离结晶过程,而不是形成于基性下地壳部分熔融作用。  相似文献   
52.
We present new U–Pb SHRIMP zircon geochronological data for basement rocks in Bangladesh, and discuss the relationship with the formation of the Columbia supercontinent. Euhedral zircons from a diorite sample yield a concordia age of 1730 ± 11 Ma, which is interpreted as the crystallization age. The Palaeoproterozoic age of the examined basement rock and the common occurrences of similar 1.7-Ga geologic units in the Central Indian Tectonic Zone and Meghalaya-Shillong Plateau in Indian Shield suggest their apparent continuation. This, together with the occurrence of similar 1.7-Ga geologic units in the Albany-Fraser belt in Australia and East Antarctica, are used to suggest that the basement rocks in Bangladesh formed towards the final stages of the assembly of the Columbia supercontinent.  相似文献   
53.
54.
We investigated levels of the pollutant tributyltin (TBT) in blood of pufferfishes (six species), Japanese sea perch, red sea bream, Japanese common goby, Japanese flounder, rockfish, conger eel, and sea mullet collected off the coast of northern Kyushu, Japan. We found considerable levels of TBT (1.4-190 ng/mL) accumulated in the blood of these fish. Blood TBT concentrations were 1.3-22.5 times liver concentrations and 4.9-78 times muscle concentrations, except in conger eel and mullet. We detected TBT (16-111 ng/mL-blood) in the plasma of the fine-patterned puffer (Takifugupoecilonotus) year-round, without any apparent seasonal trend. These results suggest that fish inhabiting coastal areas of Kyushu, Japan, continue to be contaminated with TBT.  相似文献   
55.
The in situ redox potential (Eh) in anoxic groundwater with high methane and iron contents (approximately 12.3 and 28.4 mg/L, respectively) was potentiometrically measured to identify the processes that control Eh. The measured Eh ranged from −213 to −187 mV; it had an inverse correlation with the concentration of methane and no correlation with that of iron. The saturation indices indicate that goethite and amorphous FeS were nearly at solubility equilibrium. A comparison of the measured Eh with those calculated for the particular redox pairs indicates that either Fe2+/FeOOH or CH4/CO2, but not sulfur redox pairs, controlled the measured Eh. The inverse relationship between measured Eh and methane concentration suggests possible control of the redox conditions by the CH4/CO2 redox pair. Furthermore, the equilibrium solubility state of goethite, which has higher crystallinity and lower solubility than Fe(OH)3 indicates that the iron reaction was electrochemically irreversible. This further supports the contribution of the CH4/CO2 pair to controlling the measured Eh of groundwater.  相似文献   
56.
To improve the scaling parameter controlling the impact crater formation in the strength regime, we conducted impact experiments on sintered snow targets with the dynamic strength continuously changed from 20 to 200 kPa, and the largest crater size formed on small icy satellites was considered by using the revised scaling parameter. Ice and snow projectiles were impacted on a snow surface with 36% porosity at an impact velocity from 31 m s−1 to 150 m s−1. The snow target was sintered at the temperature from −5 °C to −18 °C, and the snow dynamic strength was changed with the sintering duration at each temperature. We found that the mass ejected from the crater normalized by the projectile mass, πV, was related to the ratio of the dynamic strength to the impact pressure, , as follows: , where the impact pressure was indicated by P = ρtC0tvi/2 with the target density of ρt, when the impact velocity, vi, was much smaller than the bulk sound velocity C0t (typically 1.8 km s−1 in our targets). The ratio of the largest crater diameter to the diameter of the target body, dmax/D, was estimated by calculating the crater diameter at the impact condition for catastrophic disruption and then compared to the observed dmax/D of jovian and saturnian small satellites, in order to discuss the formation condition of these large dmax/D in the strength regime.  相似文献   
57.
Laboratory impact experiments were conducted for gypsum-glass bead targets simulating the parent bodies of ordinary chondrites. The effects of the chondrules included in the parent bodies on impact disruption were experimentally investigated in order to determine the impact conditions for the formation of rubble-pile bodies after catastrophic disruption. The targets included glass beads with a diameter ranging from 100 μm to 3 mm and the volume fraction was 0.6, similar to that of ordinary chondrites, which is about 0.65-0.75. Nylon projectiles with diameters of 10 mm and 2 mm were impacted at 60-180 m s−1 by a single-stage gas gun and at 4 km s−1 by a two-stage light gas gun, respectively. The impact strength of the gypsum-glass bead target was found to range from 56 to 116 J kg−1 depending on the glass bead size, and was several times smaller than that of the porous gypsum target, 446 J kg−1 in low-velocity collisions. The impact strengths of the 100 μm bead target and the porous gypsum target strongly depended on the impact velocity: those obtained in high-velocity collisions were several times greater than those obtained in low-velocity collisions. The velocities of fragments ejected from two corners on the impact surface of the target, measured in the center of the mass system, were slightly dependent on the target materials, irrespective of impact velocity. These results suggest that chondrule-including planetesimals (CiPs) can reconstruct rubble-pile bodies in catastrophic disruptions at the size of the planetesimal smaller than that of planetesimals without chondrules.  相似文献   
58.
To study the accretional growth of rimmed chondrules and their agglomerates in the solar nebula, we measured the restitution coefficients, ε, and the sticking velocities to a porous silica layer, vc, by impacting the silica layer with a glass ball at velocities from 0.1 to 80 m s?1. We used a porous silica layer covering a basalt block with thicknesses ranging from 1/5 of the glass ball radius to equal to the glass ball radius as a rimmed chondrule analogue, and the porosity of the silica layer was set to be 70%, 80%, 85%, and 90%. Collisional experiments were conducted by means of the free fall method or by the use of a spring gun or a gas gun, allowing us to vary the impact velocity. We used a laser displacement meter to estimate the impact and rebound velocities as well as the acceleration during the collision at impact velocities below 1 m s?1. As a result, the sticking velocity, vc, of 90%- and 85%- porosity layers with a thickness equal to 1/2 of the glass ball diameter was 0.44 and 2.4 m s?1, respectively. On the other hand, we found a distinct barrier to sticking for smaller-porosity layers: the silicate layer with a porosity smaller than 80% never exhibited sticking at any impact velocity below 1 m s?1. Instead, we observed a rebound effect with restitution coefficients larger than 0.2. In the case of a silica layer with a porosity smaller than 80%, we observed the sub-sticking condition defined by ε < 0.1 at velocities extending from 5 m s?1 to 70 m s?1.  相似文献   
59.
To clarify the effect of a surface regolith layer on the formation of craters in bedrock, we conducted impact-cratering experiments on two-layered targets composed of a basalt block covered with a mortar layer. A nylon projectile was impacted on the targets at velocities of 2 and 4 km s?1, and we investigated the crater size formed on the basalt. The crater size decreased with increased mortar thickness and decreased projectile mass and impact velocity. The normalized crater volume, πV, of all the data was successfully scaled by the following exponential equation with a reduction length λ0: πV=b0πY-b1exp(-λ/λ0), where λ is the normalized thickness T/Lp, T and Lp are the mortar thickness and the projectile length, respectively, b0 and b1 are fitted parameters obtained for a homogeneous basalt target, 10?2.7±0.7 and ?1.4 ± 0.3, respectively, and λ0 is obtained to be 0.38 ± 0.03. This empirical equation showing the effect of the mortar layer was physically explained by an improved non-dimensional scaling parameter, πY1, defined by πY1=Y/(ρtup2), where up was the particle velocity of the mortar layer at the boundary between the mortar and the basalt. We performed the impact experiments to obtain the attenuation rate of the particle velocity in the mortar layer and derived the empirical equation of upvi=0.50exp-λ1.03, where vi is the impact velocity of the projectile. We propose a simple model for the crater formation on the basalt block that the surface mortar layer with the impact velocity of up collides on the surface of the basalt block, and we confirmed that this model could reproduce our empirical equation showing the effect of the surface layer on the crater volume of basalt.  相似文献   
60.
Absorption spectra in the visible to the near ultraviolet were measured on the Belgica chondrite B-7904 in a form of thin solid film made by the vacuum evaporation. The spectra obtained exhibit a sharp peak at 226 nm and a broad bump around 280nm. These features were found arising from the meteorite component FeS (troilite). The peak at 226 nm shows a doublet structure with the band-width considerably narrower than the 217.5 nm feature in the interstellar extinction. The absorption spectra obtained previously with the pulverized chondrites suspended in a liquid were also found reproducible by the pulverized FeS.Sponsored by the Office of Health and Environmental Research, U.S. Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号