首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   15篇
  国内免费   1篇
测绘学   1篇
大气科学   22篇
地球物理   105篇
地质学   63篇
海洋学   9篇
天文学   124篇
综合类   2篇
自然地理   43篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   8篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   10篇
  2013年   17篇
  2012年   11篇
  2011年   9篇
  2010年   4篇
  2009年   10篇
  2008年   15篇
  2007年   10篇
  2006年   15篇
  2005年   21篇
  2004年   12篇
  2003年   9篇
  2002年   12篇
  2001年   11篇
  2000年   5篇
  1999年   11篇
  1998年   14篇
  1997年   10篇
  1996年   6篇
  1995年   8篇
  1994年   9篇
  1993年   8篇
  1992年   10篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1982年   3篇
  1981年   4篇
  1980年   7篇
  1979年   2篇
  1978年   3篇
  1975年   3篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
  1970年   4篇
  1969年   2篇
排序方式: 共有369条查询结果,搜索用时 31 毫秒
141.
The Pantanal is the world's largest tropical wetland and a biodiversity hotspot, yet its response to Quaternary environmental change is unclear. To address this problem, sediment cores from shallow lakes connected to the Upper Paraguay River (PR) were analyzed and radiocarbon dated to track changes in sedimentary environments. Stratal relations, detrital particle size, multiple biogeochemical indicators, and sponge spicules suggest fluctuating lake-level lowstand conditions between ~ 11,000 and 5300 cal yr BP, punctuated by sporadic and in some cases erosive flood flows. A hiatus has been recorded from ~ 5300 to 2600 cal yr BP, spurred by confinement of the PR within its channel during an episode of profound regional drought. Sustained PR flooding caused a transgression after ~ 2600 cal yr BP, with lake-level highstand conditions appearing during the Little Ice Age. Holocene PR flood pulse dynamics are best explained by variability in effective precipitation, likely driven by insolation and tropical sea-surface temperature gradients. Our results provide novel support for hypotheses on: (1) stratigraphic discontinuity of floodplain sedimentary archives; (2) late Holocene methane flux from Southern Hemisphere wetlands; and (3) pre-colonial indigenous ceramics traditions in western Brazil.  相似文献   
142.
143.
New intermediate-resolution, normal-incidence seismic reflection profiles from Lake Tanganyika’s central basin capture dramatic evidence of base-level change during two intervals of the late Pleistocene. Four seismically-defined stratigraphic sequences (A–D) tied to radiocarbon-dated sediment cores provide a chronology for fluctuating environmental conditions along the Kalya Platform. Stacked, oblique clinoforms in Sequence C are interpreted as prograding siliciclastic deltas deposited during a major regression that shifted the paleo-lake shore ∼21 km towards the west prior to ∼106 ka. The topset-to-foreset transitions in these deltas suggest lake level was reduced by ∼435 m during the period of deposition. Mounded reflections in the overlying sequence are interpreted as the backstepping remnants of the delta system, deposited during the termination of the lowstand and the onset of transgressive conditions in the basin. The youngest depositional sequence reflects the onset of profundal sedimentation during the lake level highstand. High amplitude reflections and deeply incised channels suggest a short-lived desiccation event that reduced lake level by ∼260 m, interpreted as a product of Last Glacial Maximum (32–14 ka) aridity. Paleobathymetric maps constructed for the two interpreted regressions reveal that despite the positive lake-floor topography created by the Kavala Island Ridge Accommodation Zone, Lake Tanganyika remained a large, mostly connected water body throughout the late Pleistocene. The results of this analysis further imply that Lake Tanganyika is the most drought resistant water body in the East African tropics, and may have acted as a refuge for local and migrating fauna during periods of prolonged aridity.  相似文献   
144.
This paper describes evaluation of forest stand density combining satellite imagery with forest inventory data set. The degree of canopy cover is described in terms of fractional vegetation cover (FVC) obtained by a linear mixture model applied on multi-spectral IKONOS image and canopy cover (CC). CC was calculated from field measurements of crown width of 646 standing trees sited within 72 circular (200 m2) plots. A comparison between CC and FVC shows that the former can be accurately represented by the latter linking in-situ measured forest characteristics with surface reflectance measured by a satellite.Stand density expressed as an absolute term (number of trees per unit area) showed high and significant positive correlation to FVC (R2 = 0.96) and to relative density measure (Crown Competition Factor; R2 = 0.89).In order to show the applicability of the presented approach for managerial practices, a map of the spatial distribution of stand density within the forest was produced using the above-mentioned correlations. Its quality was verified against an independent data set of ground measurements. The correlation between field- and map-based number of trees per unit area was found to be satisfactory (R2 = 0.4; p < 0.05), even though a slight lack of sensitivity was evident for low-density stands.  相似文献   
145.
While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km3 in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (104 km3) and passive margins globally (3 × 105 km3). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages.  相似文献   
146.
147.
148.
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e. plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. For the model of a single homogeneous layer above a dipping reflector, we obtain an explicit NMO expression valid for all pure modes and any orientation of the CMP line with respect to the reflector strike. The contribution of anisotropy to NMO velocity is contained in the slowness components of the zero-offset ray (along with the derivatives of the vertical slowness with respect to the horizontal slownesses) — quantities that can be found in a straightforward way from the Christoffel equation. If the medium above a dipping reflector is horizontally stratified, the effective NMO velocity is determined through a Dix-type average of the matrices responsible for the ‘interval’ NMO ellipses in the individual layers. This generalized Dix equation provides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily anisotropic media. For models with a throughgoing vertical symmetry plane (i.e. if the dip plane of the reflector coincides with a symmetry plane of the overburden), the semi-axes of the NMO ellipse are found by the more conventional rms averaging of the interval NMO velocities in the dip and strike directions. Modelling of normal moveout in general heterogeneous anisotropic media requires dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for geometrical spreading along the zero-offset ray contain all the components necessary to build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth, multi-offset ray tracing and, therefore, can be used efficiently in traveltime inversion and in devising fast dip-moveout (DMO) processing algorithms for anisotropic media. This technique becomes especially efficient if the model consists of homogeneous layers or blocks separated by smooth interfaces. The high accuracy of our NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. We also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.  相似文献   
149.
We report here on the first detailed ostracode stratigraphic record to be obtained from late Holocene sediments of Lake Tanganyika. We analyzed four cores, three from the northern lake region and a fourth from a more southern lake locality, that collectively record ostracode assemblages under a variety of disturbance regimes. These cores provide a stratigraphic record of ostracode abundance and diversity, as well as depositional changes over time periods of decades to millennia. We have investigated the fossil ostracodes in these cores by looking at temporal changes of species diversity and population structure for the species present. All four cores provided distinct patterns of ostracode diversity and abundance. BUR-1, a northern lake core obtained close to the Ruisizi River delta, yielded a sparse ostracode record. Karonge #3, another northern core from a site that is closely adjacent to a river delta with high sediment loading, yielded almost no ostracodes. The third core 86-DG-14, taken from a somewhat less disturbed area of the lake, suggests that there have been recent changes in ostracode populations. Through most of the lower portion of this core, ostracode abundance is low and species richness is relatively constant. Above 7 cm there is a marked increase in ostracode abundance and a corresponding decrease in species richness, probably signaling the onset of a major community disturbance, perhaps due to human activities. The southernmost core, 86-DG-32, is from a site that is well removed from influent rivers. Ostracode abundance varies erratically throughout the core, whereas species richness is relatively constant and high throughout the core. The temporal variation evident in ostracode community makeup both within and between the studied cores may be a result of naturally patchy distributions among ostracodes, coupled with local extinctions and recolonizations, or it may reflect inadequate sampling of these high diversity assemblages. In either case, these cores illustrate the potential to obtain high resolution ostracode records from the rich, endemic fauna of Lake Tanganyika that can be used to address questions about the history of community structure and human impacts in this lake.  相似文献   
150.

This paper describes the application of an unsupervised clustering method, fuzzy c-means (FCM), to generate mineral prospectivity models for Cu?±?Au?±?Fe mineralization in the Feizabad District of NE Iran. Various evidence layers relevant to indicators or potential controls on mineralization, including geochemical data, geological–structural maps and remote sensing data, were used. The FCM clustering approach was employed to reduce the dimensions of nine key attribute vectors derived from different exploration criteria. Multifractal inverse distance weighting interpolation coupled with factor analysis was used to generate enhanced multi-element geochemical signatures of areas with Cu?±?Au?±?Fe mineralization. The GIS-based fuzzy membership function MSLarge was used to transform values of the different evidence layers, including geological–structural controls as well as alteration, into a [0–1] range. Four FCM-based validation indices, including Bezdek’s partition coefficient (VPc) and partition entropy (VPe) indices, the Fukuyama and Sugeno (VFS) index and the Xie and Beni (VXB) index, were employed to derive the optimum number of clusters and subsequently generate prospectivity maps. Normalized density indices were applied for quantitative evaluation of the classes of the FCM prospectivity maps. The quantitative evaluation of the results demonstrates that the higher favorability classes derived from VFS and VXB (Nd?=?9.19) appear more reliable than those derived from VPc and VPe (Nd?=?6.12) in detecting existing mineral deposits and defining new zones of potential Cu?±?Au?±?Fe mineralization in the study area.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号