首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16298篇
  免费   4065篇
  国内免费   6093篇
测绘学   3179篇
大气科学   2167篇
地球物理   3099篇
地质学   11217篇
海洋学   2700篇
天文学   258篇
综合类   1390篇
自然地理   2446篇
  2024年   150篇
  2023年   374篇
  2022年   1044篇
  2021年   1333篇
  2020年   1007篇
  2019年   1165篇
  2018年   1031篇
  2017年   965篇
  2016年   969篇
  2015年   1234篇
  2014年   1166篇
  2013年   1447篇
  2012年   1594篇
  2011年   1579篇
  2010年   1536篇
  2009年   1397篇
  2008年   1447篇
  2007年   1366篇
  2006年   1341篇
  2005年   1065篇
  2004年   784篇
  2003年   551篇
  2002年   559篇
  2001年   485篇
  2000年   389篇
  1999年   170篇
  1998年   63篇
  1997年   44篇
  1996年   28篇
  1995年   12篇
  1994年   18篇
  1993年   10篇
  1992年   17篇
  1991年   6篇
  1990年   13篇
  1989年   4篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   11篇
  1983年   9篇
  1982年   6篇
  1981年   2篇
  1979年   12篇
  1978年   3篇
  1976年   3篇
  1964年   1篇
  1957年   3篇
  1954年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
中国北方干旱/半干旱区是全球主要的沙尘源区之一,风蚀造成的沙尘排放可导致大量的土壤有机质(SOM)与养分流失,并通过传输与沉降过程对其进行空间再分配,对空气质量、气候变化、植被生长及生物地球化学过程等具有重要影响。本文利用WRF/Chem(Weather Research Forecasting with Chemistry)v3.7.1大气化学传输模型,对1980—2015年间中国北方沙尘排放及其引起的SOM、全氮(TN)与全磷(TP)的时空变化过程进行了精细化模拟,探究了中国北方风蚀引起的SOM、TN与TP养分流失的时空变化特征。结果表明:① 1980—2015年来平均每年约有66.59 Tg的沙尘颗粒排放至大气;② 沙尘排放具有较大的时空差异,沙尘排放源区主要集中在新疆东部、内蒙古西部的巴丹吉林沙漠和腾格里沙漠等地区;③ 每年因沙尘排放引起的SOM、TN和TP流失量分别约为0.07 Tg、0.004 Tg和0.005 Tg;④ 1980—2015年间中国北方沙尘排放及其引起的SOM、TN与TP的流失量具有较强的年际波动,未呈现显著的趋势性变化特征。本研究对于认知风蚀在碳循环与养分循环过程中的作用,以及对深入了解中国北方的土地退化机理具有重要意义。  相似文献   
942.
本文基于MODIS-NDVI遥感数据反演计算了我国陆地2001—2015年地表植被覆盖度的空间分布,讨论了植被覆盖度的时空变化规律,分析了影响植被覆盖度近十几年来动态变化的主要驱动因素。研究结果表明:我国陆地植被覆盖度从2001—2015年,植被覆盖度总体上呈增加趋势,其中淮河流域、华北平原地区、以及黄土高原地区增加趋势显著。根据植被覆盖度在时间序列上的变化特征,可将其变化类型分为持续增长型、先减小后增长等六种类型,其中农业种植区基本为一直增长型,而主要森林覆盖区,特别是西南地区的植被覆盖度在研究时段内表现出波动性的变化特征。降水是驱动华北平原北部,内蒙古,以及西北大部分区域植被覆盖度动态变化的重要因素,东北、青藏高原等地区植被覆盖度受温度的影响较大,而在中国东南沿海地区,光照条件是影响该区域植被覆盖度的主要因素。  相似文献   
943.
于2016年7~12月和2017年4月的旱、雨季期间,以金沙江干热河谷苴那小流域内的银合欢(Leucaena Benth)林地、车桑子(Dodonaea angustifolia)灌丛地和扭黄茅(Heteropogon cantortus)草地为研究对象,通过网格法和土钻法采集并测定了(0~100 cm)土层的土壤含水量,应用经典统计法和地统计学方法分析该区域不同林草植被下坡面土壤水分的动态变化特征。结果表明:(1)研究区土壤含水量总体较低,雨季显著大于旱季,旱、雨季均表现为灌丛地>草地>林地,呈中度至强度变异(0.07~0.28之间)。(2)不同林草植被下旱、雨季土壤水分具有相似的空间自相关性,自相关系数均由正向负转变,但由正向负转变的滞后距离有所不同,且雨季大于旱季,呈中等或强等空间自相关性。(3)不同林草植被下的土壤水分空间结构不同,林地、灌丛地和草地旱雨季最佳拟合模型均为球状模型;相同林草植被下各土层旱、雨季土壤水分的空间分布特征相似,但旱季的分布格局差异更显著,不同林草植被下深层土壤水分分布比表层土壤水分的分布更为复杂,土壤水分呈明显的斑块或条带状分布,含水量高值区和低值区位置不固定。总之不同林草植被类型会改变局部地段土壤水分空间分布,降雨会加强这种差异的趋势,但土壤水分仍具一定空间连续性。  相似文献   
944.
Based on the simulation with SWAN wave model and data of ERA-Interim from 1979 to 2016, how the waves propagate globally and why swell pools distribute in the eastern ocean were investigated in this study. The simulation results show that waves from North Pacific and North Atlantic mainly propagate southeastward or southward and swells generated in Southern Ocean spread northeastward. The waves from high latitude regions spread along the east coast and encounter in the tropical Pacific and Atlantic to form swell fronts around equator and then turn eastward. As the weak wind field with numerous swell inflows, swell pools are generally located on the eastern side of the ocean basin, where the swell index S are greater than 0.9 calculated using ERA-20 C data for the period of 1981–2010. Another remarkable feature is that swell pools move southward and split into two parts in winter, while they move northward and merge together in summer.  相似文献   
945.
This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in the Beaufort-Chukchi-East Siberian-Laptev Sea(BCEL Sea), Kara Sea and southern Chukchi Sea, with an aim to understand and measure the seasonally occurring changes in the Arctic climate system. The similarities and differences among these three regions were also discussed. There are periods in spring and autumn when the changes in SIC and SSAT are not synchronized, which is a result of the seasonally occurring variation in the climate system. These periods are referred to as transition periods. Spring transition periods can be found in all three regions, and the start and end dates of these periods have advancing trends. The multiyear average duration of the spring transition periods in the BCEL Sea, Kara Sea and southern Chukchi Sea is 74 days, 57 days and 34 days, respectively. In autumn, transition periods exist in only the southern Chukchi Sea, with a multiyear average duration of only 16 days. Moreover, in the Kara Sea, positive correlation events can be found in some years, which are caused by weather time scale processes.  相似文献   
946.
To biologically inhibit the production of highly toxic sulfide in the aquaculture area, one bacterium, designated as Hydrogenovibrio thermophilus strain TT, was isolated from sediment in Jiaozhou Bay, China. The strain was found to be microaerobic mixtrophic, employing both carbon dioxide and organic carbons, e.g. citrate, lactate, glucose, and peptone as carbon sources. When it oxidized the sulfide and thiosulfate, oxygen was the optimal electron acceptor, followed by nitrite and nitrate, which benefited to removal of sulfide under low-oxygen mariculture environment. In addition, the strain TT exhibited remarkable tolerance of sulfide and thiosulfate in seawater, and it was able to oxidize 18.52 mmol L~(-1) S~(2-) in 12 h or 45 mmol L~(-1) S_2O_3~(2-) in 24 h at initial pH 7.0-9.0, 30-40℃. Therefore, this strain showed a quite promising application for biological remediation of sulfide-contaminated mariculture system.  相似文献   
947.
The biochemical composition of the turbot skin was investigated. The moisture level of the skin was found to be 51.4%. Based on dry matter content, there were relatively high protein(82.1%) and lipid(13.1%) concentrations in the turbot skin. Mineral element analysis revealed that the turbot skin had high Ca content(2069.0 mg kg^-1), and the concentrations of toxic heavy metals Hg and Pb were less than 0.005 mg kg^-1, which indicates that the turbot skin is a safe resource for collagen production. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) analysis showed that acid-soluble collagen(ASC) extracted from the turbot skin was type-I collagen. The imino acid content of the ASC was 241.6 per 1000 amino acids, which suggests a relatively high denaturation temperature. The Fourier transform infrared(FTIR) spectra of ASC reflected a highly stable structure, and the measured denaturation temperature of ASC was 29.5℃, which is higher than those from many temperate fishes. ASC was the most soluble at pH 4.0, and when the pH values were below or above 4.0, the solubility decreased rapidly. The ASC exhibited a relatively high solubility when NaCl concentration was lower than 2%. These results show that turbo skin can be employed as a source for producing collagen with high quality.  相似文献   
948.
Recently, various toppling slopes have emerged with the development of hydropower projects in the western mountainous regions of China. The slope on the right bank of the Laxiwa Hydropower Station, located on the mainstream of the Yellow River in the Qinghai Province of Northwest China, is a typical hard rock slope. Further, its deformation characteristics are different from those of common natural hard rock toppling. Because this slope is located close to the dam of the hydropower station, its deformation mechanism has a practical significance. Based on detailed geological engineering surveys, four stages of deformation have been identified using discrete element numerical software and geological engineering analysis methods, including toppling creep, initial toppling deformation, intensified toppling deformation, and current slope formation. The spatial and time-related deformation of this site also exhibited four stages, including initial toppling, toppling development, intensification of toppling, and disintegration and collapse. Subsequently, the mechanism of toppling and deformation of the bank slope were studied. The results of this study exhibit important reference value for developing the prevention–control design of toppling and for ensuring operational safety in the hydropower reservoir area.  相似文献   
949.
Zonag, Kusai, Hedin Noel and Yanhu Lakes are independent inland lakes in the Hoh Xil region on the Qinghai-Tibet Plateau. In September2011, Zonag Lake burst after the water level had increased for many years. Floods flowed through Kusai and Hedin Noel Lakes into Yanhu Lake; since then, the four small endorheic catchments merged into one larger catchment. This hydrological process caused the rapid shrinkage of Zonag Lake and continuous expansion of Yanhu Lake. In this study,based on satellite images, meteorological data and field investigations, we examined the dynamic changes in the four lakes and analyzed the influencing factors. The results showed that before 2011, the trends in the four lake areas were similar and displayed several stages. The change in the area of Zonag Lake corresponded well to the change in annual precipitation(AP), but the magnitude of the change was less than that of a non-glacier-fed lake. Although increased precipitation was the dominant factor that caused Zonag Lake to expand, increased glacier melting and permafrost thawing due to climate warming also had significant effects. After the 2011 outburst of Zonag Lake, due to the increasing AP and accelerating glacier melting, the increases in water volume of the three lakes were absorbed by Yanhu Lake, and Yanhu Lake expanded considerably. According to the rapid growth rates in water level and lake area, Yanhu Lake is likely to burst in 1-2 years.  相似文献   
950.
The forest litter is an essential reservoir of nutrients in forests, supplying a large part of absorbable base cations(BC) to topsoil, and facilitating plant growth within litter-soil system. To characterize elevational patterns of base cation concentrations in the forest litter and topsoil, and explore the effects of climate and tree species, we measured microclimate and collected the forest litter and topsoil(0-10 cm) samples across an elevational range of more than 2000 m(1243 ~ 3316 m a.s.l.),and analyzed the concentrations of BC in laboratory. Results showed that: 1) litter Ca concentration displayed a hump-shaped pattern along the elevational gradients, but litter K and Mg showed saddle-shaped patterns. Soil Ca concentration increased with elevation, while soil K and Mg had no significant changes. 2) Ca concentration in the forest litter under aspen(Populus davidiana) was significantly higher than that in all other species, but in topsoil, Ca concentration was higher under coniferous larch and fir(Larix chinensis and Abies fargesii). Litter K and Mg concentrations was higher under coniferous larch and fir, whereas there were nosignificant differences among tree species in the concentrations of K and Mg in topsoil. 3) Climatic factors including mean annual temperature(MAT), growing season precipitation(GSP) and non-growing season precipitation(NGSP) determined BC concentrations in the forest litter and topsoil. Soil C/N and C/P also influenced BC cycling between litter and soil. Observation along elevations within different tree species implies that above-ground tree species can redistribute below-ground cations, and this process is profoundly impacted by climate. Litter and soil Ca, K and Mg with different responses to environmental variables depend on their soluble capacity and mobile ability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号