首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   3篇
地球物理   19篇
地质学   4篇
海洋学   2篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
  1996年   1篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1972年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
11.
12.
First, we investigated some aspects of tsunami–tide interactions based on idealized numerical experiments. Theoretically, by changing total ocean depth, tidal elevations influence the speed and magnitude of tsunami waves in shallow regions with dominating tidal signals. We tested this assumption by employing a simple 1-D model that describes propagation of tidal waves in a channel with gradually increasing depth and the interaction of the tidal waves with tsunamis generated at the channel's open boundary. Important conclusions from these studies are that computed elevations by simulating the tsunami and the tide together differ significantly from linear superposing of the sea surface heights obtained when simulating the tide and the tsunami separately, and that maximum tsunami–tide interaction depends on tidal amplitude and phase. The major cause of this tsunami–tide interaction is tidally induced ocean depth that changes the conditions of tsunami propagation, amplification, and dissipation. Interactions occur by means of momentum advection, bottom friction, and variable water flux due to changing total depth and velocity. We found the major cause of tsunami–tide interactions to be changing depth. Secondly, we investigate tsunami–tide interactions in Cook Inlet, Alaska, employing a high-resolution 2-D numerical model. Cook Inlet has high tides and a history of strong tsunamis and is a potential candidate for tsunami impacts in the future. In agreement with previous findings, we find that the impacts of tsunamis depend on basin bathymetries and coastline configurations, and they can, in particular, depend on tsunami–tide interactions. In regions with strong tides and tsunamis, these interactions can result in either intensification or damping of cumulative tsunami and tide impacts, depending on mean basin depth, which is regulated by tides. Thus, it is not possible to predict the effect of tsunami–tide interaction in regions with strong tides without making preliminary investigations of the area. One approach to reduce uncertainties in tsunami impact in regions with high tides is to simulate tsunamis together with tidal forcing.  相似文献   
13.
14.
15.
Summary Samples of metallurgical dusts and fly ashes from coal power plants and iron works in Upper Silesia as well as soil profiles in the close vicinity of these plants and in Ojcow National Park (ca. 25 km east of the industrial area) have been studied magnetically and mineralogically. The metallurgical dusts and fly ashes are highly enriched in ferromagnetic minerals. The topsoils from profiles collected near the plants have very high values of magnetic susceptibility while susceptibility in the fermentation and humic subhorizons in soil profiles from Ojcow National Park is considerably increased. The magnetic properties of the metallurgical dusts and fly ashes such as frequency dependence of susceptibility, saturation remanence or coercivity are similar to those observed in the top horizons of the soils. They are mostly related to the occurrence of large (multidomain) grains of non-stoichiometric magnetite ranging from 1 to 20 μm. The similarity of the magnetic particles in the soils is taken as evidence of an anthropogenic origin. They are responsible for the high soil susceptibilities in Upper Silesia and in adjacent areas. Some of the magnetic particles carry substantial quantitities of trace elements such as Pb, Ni, Zn and Cu. Field and laboratory susceptibility measurements can therefore be used as a simple and costeffective method of detecting the presence of heavy metals in the soils of this area.  相似文献   
16.
A numerical model for the global tsunamis computation constructed by Kowalik et al. (2005), is applied to the tsunami of 26 December, 2004 in the World Ocean from 80°S to 69°N with spatial resolution of one minute. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a Cray X1 supercomputer. An energy flux function is used to investigate energy transfer from the tsunami source to the Atlantic and Pacific Oceans. Although the first energy input into the Pacific Ocean was the primary (direct) wave, reflections from the Sri Lankan and eastern shores of Maldives were a larger source. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean by various routes. The direct path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a considerably longer distance via South Pacific ridges as these bathymetric features amplified the energy flux vectors. Travel times for these amplified energy fluxes are much longer than the arrival of the first wave. These large fluxes are organized in the wave-like form when propagating between Australia and Antarctica. The sources for the larger fluxes are multiple reflections from the Seychelles, Maldives and a slower direct signal from the Bay of Bengal. The energy flux into the Atlantic Ocean shows a different pattern since the energy is pumped into this domain through the directional properties of the source function. The energy flow into the Pacific Ocean is approximately 75% of the total flow to the Atlantic Ocean. In many locations along the Pacific and Atlantic coasts, the first arriving signal, or forerunner, has lower amplitude than the main signal which often is much delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction.  相似文献   
17.
Field magnetometry is fast and convenient method used to detect areas contaminated by technogenic magnetic particles and potentially polluted with heavy metals. Frequently, measurements of soil magnetic susceptibility (κ) are carried out with MS2D Bartington sensor, which penetration range equals 10 cm, although 90% of the total signal is detected from a depth of up to 6 cm. Thick uppermost organic soil layers may significantly influence on the measured κ because the penetration range may be not large enough to cover the layers where the most of anthropogenic contaminants are cumulated. The aim of the study was to investigate on how the removal of the litter improves the MS2D measurements of soil pollution. Accordingly, the correlations between κ values measured on the successively removed overlying soil sub-horizons were investigated. Measurements were performed at 15 sites located in different forest in the Upper Silesian Industrial Area, Poland. The results showed that the litter removal enabled the MS2D to measure the κ more related to the anthropogenic pollution, and did not affect the measuring variance.  相似文献   
18.
19.
20.
In this paper, a modified tachoida is applied to the estimation of sediment transport in a river. Eddy viscosity coefficient at the bottom which satisfied hydrodynamics stability of the flow is related to the sediment concentration. On this basis it was possible to determine the sediment stream in the river based on the bottom sediment composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号