首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3091篇
  免费   129篇
  国内免费   17篇
测绘学   116篇
大气科学   375篇
地球物理   620篇
地质学   954篇
海洋学   349篇
天文学   571篇
综合类   4篇
自然地理   248篇
  2023年   9篇
  2022年   10篇
  2021年   33篇
  2020年   45篇
  2019年   45篇
  2018年   86篇
  2017年   64篇
  2016年   117篇
  2015年   70篇
  2014年   96篇
  2013年   143篇
  2012年   130篇
  2011年   172篇
  2010年   136篇
  2009年   206篇
  2008年   180篇
  2007年   168篇
  2006年   139篇
  2005年   117篇
  2004年   121篇
  2003年   115篇
  2002年   110篇
  2001年   78篇
  2000年   96篇
  1999年   71篇
  1998年   90篇
  1997年   51篇
  1996年   47篇
  1995年   39篇
  1994年   28篇
  1993年   36篇
  1992年   27篇
  1991年   34篇
  1990年   18篇
  1989年   18篇
  1987年   15篇
  1986年   12篇
  1985年   21篇
  1984年   28篇
  1983年   20篇
  1982年   11篇
  1981年   10篇
  1980年   14篇
  1979年   17篇
  1978年   14篇
  1977年   11篇
  1976年   15篇
  1975年   16篇
  1973年   13篇
  1971年   7篇
排序方式: 共有3237条查询结果,搜索用时 15 毫秒
991.
Drawing on recent estimates of the power of jets from X-ray binary systems as a function of X-ray luminosity, combined with improved estimates of the relevant  log( N )–log( L X)  luminosity functions, we calculate the total energy input to the interstellar medium (ISM) from these objects. The input of kinetic energy to the ISM via jets is dominated by those of the black hole systems, in contrast to the radiative input, which is dominated by accreting neutron stars. Summing the energy input from black hole jets L J in the Milky Way, we find that it is likely to correspond to ≥1 per cent of L SNe, the time-averaged kinetic luminosity of supernovae, and ≥5 per cent of L CR, the cosmic ray luminosity. Given uncertainties in jet power estimates, significantly larger contributions are possible. Furthermore, in elliptical galaxies with comparable distributions of low mass X-ray binaries, but far fewer supernovae, the ratio   L J/ L SNe  is likely to be larger by a factor of ∼5. We conclude that jets from X-ray binaries may be an important, distributed, source of kinetic energy for the ISM in the form of relativistic shocks, and as a result are likely to be a major source of cosmic rays.  相似文献   
992.
We study the mass assembly history (MAH) of dark matter haloes. We compare MAHs obtained using (i) merger trees constructed with the extended Press–Schechter (EPS) formalism, (ii) numerical simulations and (iii) the Lagrangian perturbation code pinocchio . We show that the pinocchio MAHs are in excellent agreement with those obtained using numerical simulations, while the EPS formalism predicts MAHs that occur too late. pinocchio , which is much less CPU intensive than N -body simulation, can be run on a simple personal computer, and does not require any labour intensive post-simulation analysis, therefore provides a unique and powerful tool to investigate the growth history of dark matter haloes. Using a suite of 55 pinocchio simulations, with 2563 particles each, we study the MAHs of 12 924 cold dark matter (CDM) haloes in a ΛCDM concordance cosmology. This is by far the largest set of haloes used for any such analysis. For each MAH we derive four different formation redshifts, which characterize different epochs during the assembly history of a dark matter halo. We show that haloes less massive than the characteristic non-linear mass scale establish their potential wells much before they acquire most of their mass. The time when a halo reaches its maximum virial velocity roughly divides its mass assembly into two phases, a fast-accretion phase which is dominated by major mergers, and a slow-accretion phase dominated by minor mergers. Each halo experiences about 3 ± 2 major mergers since its main progenitor had a mass equal to 1 per cent of the final halo mass. This major merger statistic is found to be virtually independent of halo mass. However, the average redshift at which these major mergers occur is strongly mass dependent, with more massive haloes experiencing their major mergers later.  相似文献   
993.
994.
995.
We describe the interplanetary coronal mass ejections (ICMEs) that occurred as a result of a series of solar flares and eruptions from 4 to 8 November 2004. Two ICMEs/magnetic clouds occurring from these events had opposite magnetic orientations. This was despite the fact that the major flares related to these events occurred within the same active region that maintained the same magnetic configuration. The solar events include a wide array of activities: flares, trans-equatorial coronal loop disappearance and reformation, trans-equatorial filament eruption, and coronal hole interaction. The first major ICME/magnetic cloud was predominantly related to the active region 10696 eruption. The second major ICME/magnetic cloud was found to be consistent with the magnetic orientation of an erupting trans-equatorial filament or else a rotation of 160° of a flux rope in the active region. We discuss these possibilities and emphasize the importance of understanding the magnetic evolution of the solar source region before we can begin to predict geoeffective events with any accuracy.  相似文献   
996.
Evidence from Liang Bua, a limestone cave on the island of Flores in East Indonesia, provides a unique opportunity to explore the long term relationship between hominins and their environment. Occupation deposits at the site span ~95 ka and contain abundant stone artefacts, well preserved faunal remains and evidence for an endemic species of hominin: Homo floresiensis. Work at the site included detailed geomorphological and environmental analysis, which has enabled comparisons to be drawn between changes in the occupational intensity in the cave, using stone tool and faunal counts, and changes in the environmental conditions, using the characteristics of the sedimentary layers in the cave and speleothem records. These comparisons demonstrate that H. floresiensis endured rapidly fluctuating environmental conditions over the last ~100 ka, which influenced the geomorphological processes in the cave and their occupational conditions. The intensity of occupation in the cave changed significantly between 95 and 17 ka, with peaks in occupation occurring at 100–95, 74–61 and 18–17 ka. These correlate with episodes of channel formation and erosion in the cave, which in turn correspond with high rainfall, thick soils and high bio-productivity outside. In contrast, periods of low occupational intensity correlate with reduced channel activity and pooling associated with drier periods from 94 to 75 and 36 to 19 ka. This apparent link between intensity of hominin use of the cave and the general conditions outside relates to the expansion and contraction of the rainforest and the ability of H. floresiensis to adapt to habitat changes. This interpretation implies that these diminutive hominins were able to survive abrupt and prolonged environmental changes by changing their favoured occupation sites. These data provide the basis for a model of human–environment interactions on the island of Flores. With the addition of extra data from other sites on Flores, this model will provide a greater understanding of H. floresiensis as a unique human species.  相似文献   
997.
Low-mass white dwarfs can be produced either in low-mass X-ray binaries by stable mass transfer to a neutron star, or in a common envelope phase with a heavier white dwarf companion. We have searched eight low-mass white dwarf candidates recently identified in the Sloan Digital Sky Survey for radio pulsations from pulsar companions, using the Green Bank Telescope at 340 MHz. We have found no pulsations down to flux densities of 0.6–0.8 mJy kpc−2 and conclude that a given low-mass helium-core white dwarf has a probability of  <0.18 ± 0.05  of being in a binary with a radio pulsar.  相似文献   
998.
999.
We present a series of 2-D numerical models of viscous flow in the mantle wedge induced by a subducting lithospheric plate. We use a kinematically defined slab geometry approximating the subduction of the Philippine Sea plate beneath Eurasia. Through finite element modelling we explore the effects of different rheological and thermal constraints (e.g. a low-viscosity region in the wedge corner, power law versus Newtonian rheology, the inclusion of thermal buoyancy forces and a temperature-dependent viscosity law) on the velocity and finite strain field in the mantle wedge. From the numerical flow models we construct models of anisotropy in the wedge by calculating the evolution of the finite strain ellipse and combining its geometry with appropriate elastic constants for effective transversely isotropic mantle material. We then predict shear wave splitting for stations located above the model domain using expressions derived from anisotropic perturbation theory, and compare the predictions to ∼500 previously published shear wave splitting measurements from seventeen stations of the broad-band F-net array located in southwestern Japan. Although the use of different model parameters can have a substantial effect on the character of the finite strain field, the effect on the average predicted splitting parameters is small. However, the variations with backazimuth and ray parameter of individual splitting intensity measurements at a given station for different models are often different, and rigorous analysis of details in the splitting patterns allows us to discriminate among different rheological models for flow in the mantle wedge. The splitting observed in southwestern Japan agrees well with the predictions of trench-perpendicular flow in the mantle wedge along with B-type olivine fabric dominating in a region from the wedge corner to about 125 km from the trench.  相似文献   
1000.
As a complement to our efforts to update and revise the thermodynamic basis for predicting garnet-melt trace element partitioning using lattice-strain theory (van Westrenen and Draper in Contrib Mineral Petrol, this issue), we have performed detailed statistical evaluations of possible correlations between intensive and extensive variables and experimentally determined garnet-melt partitioning values for trivalent cations (rare earth elements, Y, and Sc) entering the dodecahedral garnet X-site. We applied these evaluations to a database containing over 300 partition coefficient determinations, compiled both from literature values and from our own work designed in part to expand that database. Available data include partitioning measurements in ultramafic to basaltic to intermediate bulk compositions, and recent studies in Fe-rich systems relevant to extraterrestrial petrogenesis, at pressures sufficiently high such that a significant component of majorite, the high-pressure form of garnet, is present. Through the application of lattice-strain theory, we obtained best-fit values for the ideal ionic radius of the dodecahedral garnet X-site, r 0(3+), its apparent Young’s modulus E(3+), and the strain-free partition coefficient D 0(3+) for a fictive REE element J of ionic radius r 0(3+). Resulting values of E, D 0, and r 0 were used in multiple linear regressions involving sixteen variables that reflect the possible influence of garnet composition and stoichiometry, melt composition and structure, major-element partitioning, pressure, and temperature. We find no statistically significant correlations between fitted r 0 and E values and any combination of variables. However, a highly robust correlation between fitted D 0 and garnet-melt Fe–Mg exchange and D Mg is identified. The identification of more explicit melt-compositional influence is a first for this type of predictive modeling. We combine this statistically-derived expression for predicting D 0 with the new expressions for predicting E and r 0 outlined in the first of our pair of companion papers into an updated set of formulae that use easy-to-measure quantities (e.g. garnet composition, pressure, temperature) to predict variations in E, r 0, and D 0. These values are used in turn to calculate D values for those garnets. The updated model substantially improves upon a previous model (van Westrenen et al. in Contrib Mineral Petrol 142:219–234, 2001), and accounts well for trivalent cation partitioning in nominally anhydrous systems up to at least 15 GPa, including for eclogitic bulk compositions and for Fe-rich systems appropriate to magmagenesis on the Moon and Mars. The new model is slightly less successful in predicting partitioning with strongly majoritic garnets, although the mismatch is much less than with the original 2001 model. Although it also improves upon the 2001 model in predicting partitioning in hydrous systems, the mismatch between model and observation is still unacceptably large. The same statistical tools were applied in an attempt to predict tetravalent partitioning as well, because lattice-strain based techniques are not applicable to such partitioning. However, no statistically significant predictive relationships emerged from that effort. Our analyses show that future efforts should focus on filling the gap in partitioning data between ∼10 and 25 GPa to evaluate more closely the gradual transition of garnet to majorite, and on systematically expanding the hydrous partitioning database to allow extension of our model to water-bearing systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号