首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2005年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Wolf volcano, an active shield volcano on northern Isabela Islandin the Galápagos Archipelago, has undergone two majorstages of caldera collapse, with a phase of partial calderarefilling between. Wolf is a typical Galápagos shieldvolcano, with circumferential vents on the steep upper carapaceand radial vents distributed in diffuse rift zones on the shallower-slopinglower flanks. The radial fissures continue into the submarineenvironment, where they form more tightly focused rift zones.Wolf's magmas are strikingly monotonous: estimated eruptivetemperatures of the majority of lavas span a total of only 22°C.This homogeneity is attributed to buffering of magmas as theyascend through a thick column of olivine gabbroic mush thathas been deposited from a thin, shallow (<2 km deep) subcalderasill that is in a thermochemical steady state. Wolf's lavashave the most depleted isotopic compositions of any historicallyactive intraplate ocean island volcano on the planet and haveisotopic compositions (except for 3He/4He) indistinguishablefrom mid-ocean ridge basalt erupted from the GalápagosSpreading Center (GSC) 250–410 km away from the peak ofinfluence of the Galápagos plume. Wolf's lavas are enrichedin incompatible trace elements and have systematic major elementdifferences relative to GSC lavas, however. Wolf's magmas resultfrom lower extents of melting, deeper melt extraction, and agreater influence of garnet compared with GSC magmas, but Wolfand the GSC share the same sources. These melt generation conditionsare attributed to melting in a thermal and mechanical boundarylayer of depleted asthenosphere at the margins of the Galápagosplume. The lower degrees of melting and extraction from deeperlevels result from a thicker lithospheric cap at Wolf than existsat the GSC. KEY WORDS: caldera; Galápagos; mush; partial melting; plume  相似文献   
2.
Crystallization experiments were conducted on dry glasses fromthe Unzen 1992 dacite at 100–300 MPa, 775–875°C,various water activities, and fO2 buffered by the Ni–NiObuffer. The compositions of the experimental products and naturalphases are used to constrain the temperature and water contentsof the low-temperature and high-temperature magmas prior tothe magma mixing event leading to the 1991–1995 eruption.A temperature of 1050 ± 75°C is determined for thehigh-temperature magma based on two-pyroxene thermometry. Theinvestigation of glass inclusions suggests that the water contentof the rhyolitic low-temperature magma could be as high as 8wt % H2O. The phase relations at 300 MPa and in the temperaturerange 870–900°C, which are conditions assumed to berepresentative of the main magma chamber after mixing, showthat the main phenocrysts (orthopyroxene, plagioclase, hornblende)coexist only at reduced water activity; the water content ofthe post-mixing dacitic melt is estimated to be 6 ± 1wt % H2O. Quartz and biotite, also present as phenocrysts inthe dacite, are observed only at low temperature (below 800–775°C).It is concluded that the erupted dacitic magma resulted fromthe mixing of c. 35 wt % of an almost aphyric pyroxene-bearingandesitic magma (1050 ± 75°C; 4 ± 1 wt % H2Oin the melt) with 65 wt % of a phenocryst-rich low-temperaturemagma (760–780°C) in which the melt phase was rhyolitic,containing up to 8 ± 1 wt % H2O. The proportions of rhyoliticmelt and phenocrysts in the low-temperature magma are estimatedto be 65% and 35%, respectively. It is emphasized that the strongvariations of phenocryst compositions, especially plagioclase,can be explained only if there were variations of temperatureand/or water activity (in time and/or space) in the low-temperaturemagma. KEY WORDS: Unzen volcano; magma mixing; experimental study  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号