首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   26篇
  国内免费   4篇
测绘学   7篇
大气科学   22篇
地球物理   74篇
地质学   138篇
海洋学   22篇
天文学   51篇
综合类   3篇
自然地理   19篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   9篇
  2019年   4篇
  2018年   12篇
  2017年   20篇
  2016年   21篇
  2015年   16篇
  2014年   32篇
  2013年   37篇
  2012年   20篇
  2011年   21篇
  2010年   20篇
  2009年   18篇
  2008年   11篇
  2007年   2篇
  2006年   9篇
  2005年   11篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   6篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1980年   1篇
  1978年   1篇
  1968年   1篇
  1962年   1篇
  1958年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
331.
The present work aims to assess the efficiency of heavy metal accumulation of native species growing in contaminated soils in the mining district of Taxco, Mexico. Soil and tailing sampling was conducted in three study sites: La Concha, El Fraile, and a control site. The study localities present diverse metal concentrations with significant differences in their proportion in the geochemical fractions. Results show that species Cupressus lindleyi and Juniperus deppeana accumulate Zn and Mn in anomalous concentrations at La Concha, where Zn is present in soluble fractions. Manganese, despite not being present mostly in the soluble fraction in soils and tailings, seems to have been increased in the soluble fraction after the plant growth. In contrast, samples of the same species taken at El Fraile and in the control site, where Zn and Mn are mainly contained in the residual fraction, do not show an anomalous enrichment. Other analyzed species growing under the same contamination conditions in La Concha (Jacaranda mimosifolia and Psidium guajava) do not show anomalous concentrations. These facts confirm the Zn and Mn accumulation capacity of C. lindleyi and Ju. deppeana, which depends on their accumulation ability and on the concentration of these elements in the soluble fraction.  相似文献   
332.
A better understanding of biological systems can only be gained if we understand what processes are important and how they operate to determine the distribution of organisms. Coastal orientation and depth can influence environmental conditions, including the degree of water motion and availability of light, which in turn may influence the horizontal and vertical patterns of organism distribution. Here, we used a mixed‐model design to examine the effects of coastal orientation and depth on the structure of benthic assemblages by comparing the abundance and distribution of macroalgae and invertebrates in shallow and deep waters on the opposing coasts of São Miguel. Generally, coastal orientation had little influence on the distribution of most taxa. In contrast, significant differences were generally associated with depth, although patterns were spatially variable at the scale of locations. This study suggests that depth, and processes operating at the scale of location, but not at the scale of the coast, have an important influence on these assemblages, and that failure to recognise such a scale of variability may hamper our ability to better understand the processes that structure these communities.  相似文献   
333.
The lateral continuity and facies heterogeneities of metre‐scale cycles in a greenhouse Lower Jurassic (Sinemurian) carbonate ramp from the northern Iberian Basin (Spain) was evaluated from extensive field analysis carried out on a well‐exposed 12 km long outcrop. Eleven high‐frequency continuous cycles and their bounding surfaces are traceable laterally through the entire outcrop. However, three of these cycles are found to split laterally into discontinuous cycles of more limited distribution (up to 3 to 5 km of lateral extent). The continuous and discontinuous cycles have a similar field expression in one‐dimensional logs. As a consequence, the number of cycles that can be differentiated is variable along the logged sections (i.e. from 11 to 16). Cycles have variable facies heterogeneities and sedimentary trends depending on the environment of formation: shallowing‐upward and symmetrical cycles occur in protected lagoon–tidal flat areas and in the open‐marine, high‐energy domain. These cycles show significant facies heterogeneities, which were controlled mainly by lateral migration of a mosaic of facies over an irregular topography. Deepening‐upward and aggradational cycles are generated in low‐energy, sub wave‐base, open‐marine areas. Facies are laterally homogeneous, reflecting low potential for carbonate accumulation and inability to fill the created accommodation space in this low‐relief and relatively deep area. Cycle boundaries are generated by stages of rapid accommodation gain, involving the flooding of the carbonate ramp; they are more likely to originate from regional tectonic pulses (related to the extensional tectonics operating in the northern Iberian Basin) rather than greenhouse low‐amplitude eustacy. Discontinuous cycles tend to occur in thickened areas and are interpreted as originating from the infill of wedge‐shaped accommodation space resulting from differential subsidence (i.e. local tectonic pulses). In conclusion, where thickness variations occur in extensional settings lateral continuity of cycles should not be expected. In less well‐exposed, or in one‐dimensional sections and in wells, it would not be possible to distinguish continuous from discontinuous cycles, or to understand such two‐dimensional heterogeneities. Identification of unique cycle‐forming mechanisms or attempting cyclostratigraphic long‐distance correlation of cycles is unrealistic without a detailed analysis of the architecture of cycles in laterally continuous outcrops.  相似文献   
334.
This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box‐plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously.  相似文献   
335.
The geomorphological evolution of the Cobiheru Cave shows the influence of the non‐carbonate coastal mountain ranges on coastal karst evolution, as well as the temporal distribution of the cold‐adapted fauna sites in the Cantabrian Coast. Geomorphological observation and uranium/thorium (U/Th) dating lead to the construction of an evolution model. The model comprises two episodes of cave deposition occurring at c. 60–70 and 130–150 ka, linked to cold climate conditions, global sea‐level lowstands and the erosion of alluvial fans that covered the karst. Moreover, the comparison between the Cobiheru record and some raised beaches identified in previous studies sets the beginning of the sea‐level lowering in the Cantabrian Sea during the marine isotope stages (MIS) 5–4 transition. Two palaeoenvironments are inferred based on finding Equus ferus and Elona quimperiana. A wet deciduous forest would have developed on the emerged marine terrace of the Cobiheru Cave since at least the Middle Pleistocene, and an open landscape with scarce vegetation would have been present at c. 65 ka. The erosional event identified in the Cobiheru Cave helps to understand the temporal distribution of cold‐adapted mammals located in the Asturias region. The probable sites of cold‐adapted fauna developed in caves and alluvial fans would have disappeared after 65 ka. Therefore, palaeontological and palaeoclimate research based on cold‐adapted mammals suggests the occurrence of an hiatus in the palaeontological record prior to 50 ka. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
336.
In an attempt to incorporate both line of evidence (LOE) and classical weight of evidence (WOE) approaches for the assessment of sediment quality, a set of biomarkers were analyzed in target tissues of two invertebrate species after 28 days of exposure to sediments impacted by oil (derived from the tanker Prestige (2002)). The integration of biomarkers with sediment contamination, acute toxicity and benthic alteration parameters provides an “early warning” tool which not only indicates the environmental quality of an area, but also constitutes an advisory tool for potential ecological risks. The selected biomarkers provide information about the first biological responses due to the presence of contaminants in the environment providing predictable reports about further effects to the ecosystem. The present study demonstrates that the use of a set of biomarkers as part of a WOE approach designed to assess contaminated sediments contributes added value to the classical LOE and allows characterization of the environmental status of the studied area in a more precise and accurate way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号