首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8945篇
  免费   367篇
  国内免费   41篇
测绘学   264篇
大气科学   562篇
地球物理   3079篇
地质学   2924篇
海洋学   479篇
天文学   1635篇
综合类   36篇
自然地理   374篇
  2022年   57篇
  2021年   138篇
  2020年   159篇
  2019年   123篇
  2018年   332篇
  2017年   313篇
  2016年   468篇
  2015年   343篇
  2014年   399篇
  2013年   499篇
  2012年   427篇
  2011年   428篇
  2010年   378篇
  2009年   440篇
  2008年   368篇
  2007年   264篇
  2006年   292篇
  2005年   268篇
  2004年   231篇
  2003年   230篇
  2002年   185篇
  2001年   154篇
  2000年   163篇
  1999年   113篇
  1998年   143篇
  1997年   120篇
  1996年   88篇
  1995年   95篇
  1994年   117篇
  1993年   71篇
  1992年   77篇
  1991年   68篇
  1990年   82篇
  1989年   72篇
  1988年   66篇
  1987年   69篇
  1986年   59篇
  1985年   76篇
  1984年   61篇
  1983年   81篇
  1982年   82篇
  1981年   74篇
  1980年   71篇
  1979年   66篇
  1978年   73篇
  1977年   65篇
  1975年   67篇
  1973年   63篇
  1972年   51篇
  1971年   62篇
排序方式: 共有9353条查询结果,搜索用时 15 毫秒
151.
Radial velocities of OB stars are utilised in order to determine the values of some galactic structure parameters in the solar neighbourhood.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   
152.
The main shock of the West-Bohemian earthquake swarm, Czechoslovakia, (magnitudem=4.5, depthh=10 km) exhibits an irregular areal distribution of macroseismic intensities 6° to 7° MSK-64. Four lobes of the 6° isoseismal are found and the maximum observed intensity is located at a distance of 8 km from the instrumentally determined epicentre. This distribution can be explained by the energy flux of the directS wave generated by a circular source, the hypocentral location and focal mechanism of which are taken from independent instrumental studies. The theoretical intensity, which is assumed to be logarithmically proportional to the integrated squared ground-motion velocity (i.e.,I=const+log v 2 (t)dt), fits the observed intensity with an overall root-mean-square error less than 0.5°. It is important that the present intensity data can also be equally well explained by the isotropic source. The fit was attained by means of a horizontally layered model though large fault zones and an extended sedimentary basin suggest a significant lateral heterogeneity of the epicentral region. The results encourage a broader application of the simple modelling technique used.  相似文献   
153.
Effects of collisions with interplanetary particles are investigated. To this purpose, collision probabilities for comets with different orbital elements are computed. It is found that collisions may have a non-negligible effect on the physical evolution of comets. In this connection, it is shown that under certain conditions collisional lifetimes may be shorter than dynamical or vaporization lifetimes. In particular, collisional lifetimes are on average shorter for comets in retrograde orbits than those for direct ones. It is further suggested that catastrophic collisions may contribute to prevent long-period comets in retrograde orbits from reaching short-period orbits by orbital diffusion. Collisions may also produce irregularities of the nucleus brightness by leaving exposed regions of fresh volatile material and may in this way lead to a rejuvenation of old dusty short-period comets. Catastrophic collision probabilities are too low to account for the observed comet splittings, so other trigger mechanisms should be at work. However, it is shown that collisional mini-bursts (increases in brightness of one magnitude or so) caused by decimeter-sized bodies may occur rather frequently on short-period comets when they pass through the asteroid belt. The burst observed in comet Tempel-2 at 3 AU in December, 1978 could be an example of such collisional mini-bursts. The systematic observation of periodic comets when they pass through the asteroid belt could give valuable information about the spatial density of decimeter and meter-sized bodies. In particular, collisional effects for comet Halley, for which a continuous surveillance is planned, are evaluated.  相似文献   
154.
The aim of the present paper will be to detail the explicit form of the equations which govern first-order oscillations of fast-rotating globes of self-gravitating fluids; with due account taken of the effects arising from the centrifugal as well as Coriolis force. As such configurations oscillate in general about distorted figures of equilibrium, the equations governing them can be conveniently expressed in terms of the Clairaut coordinates, associated with distorted spheroidal figures, and introduced in our previous paper (Kopal, 1980) for this purpose.In Section 2 which follows a brief outline of our problem, the equilibrium properties of fast-rotating configurations or arbitrary structure will be formulated. In Section 3 we shall carry out a separation of the variables in the equations of motion, and reduce the partial differential equations of the problem to an equivalent system of ordinary differential equations, by an expansion of expressions for the velocity componentsU, V, W in terms of tesseral harmonicsY n m (, ). The explicit form of such a system, including the effects of all tesseral harmonics of orders up tom=n=4, will be specified in Section 3 for configurations whose equilibrium form is a sphere; while in Section 4 this latter condition will be relaxed to allow for the equilibrium configuration to become a rotational spheroid.In the concluding Section 5 we shall convert the complex form of our equations of motion into real terms, amenable to a solution-analytical or numerical-in terms of real variables; and shall establish the boundary conditions necessary for a specification of the characteristic frequencies of oscillation.  相似文献   
155.
Part I gives a survey of the drastic revision of cosmic plasma physics which is precipitated by the exploration of the magnetosphere throughin situ measurements. The pseudo-plasma formalism, which until now has almost completely dominated theoretical astrophysics, must be replaced by an experimentally based approach involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important.In Part II the revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud; they may just as well pinch the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together.Part III treats the formation of stars in a dusty cosmic plasma cloud. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instability. A reasonable mechanism is that the sedimentation of dust (including solid bodies of different size) is triggering off a gravitationally assisted accretion. A stellesimal accretion analogous to the planetesimal accretion leads to the formation of a star surrounded by a very low density hollow in the cloud. Matter falling in from the cloud towards the star is the raw material for the formation of planets and satellites.The study of the evolution of a dark cloud leads to a scenario of planet formation which is reconcilable with the results obtained from studies based on solar system data. This means that the new approach to cosmical plasma physics discussed in Part I logically leads to a consistent picture of the evolution of dark clouds and the formation of solar systems.  相似文献   
156.
Under the assumption of a power law (k·R n=C,C=const.) between the gravitational constantk and the radius of curvatureR of the Universe and forP=1/3 the exact solution is sought for the cosmological equations of Brans and Dicke. The solution turns out to be valid for closed space and the parameter of the scalar-tensor theory is necessarily negative. The radius of curvature increases linearly with respect to the age of the Universe while the gravitational constant grows with the square of the radius of curvature. It has been shown (Lessner, 1974) that in this case (KR 2) the spatial component of the field equations is independent of the remaining equations. However, our solution satisfies this independent equation. This solution for the radiation-dominated era corresponds to the solution for the matter-dominated era found by Dehnen and one of the authors (Dehnen and Obregón, 1971). Our solution, as is the solution previously obtained for the matter-dominated era, is in contradiction to Dirac's hypothesis in which the gravitational constant should decrease with time in an expanding Universe.  相似文献   
157.
158.
The aim of the present paper will be to detail the procedure outlined in our previous investigations (Kopal, 1975; Kopalet al., 1976) for a solution of the elements of distorted eclipsing systems by a Fourier analysis of their light changes. This procedure—which constitutes an equivalent, in the frequency-domain, of rectification hitherto practised in the time-domain — should enable us to free the observed momentsA 2m of the light curves from all photometric effects of distortion (between minima as well as within eclipses) — a feat impossible in the time-domain except under very restricted conditions — and thus to make it possible to obtain the geometrical elements of the eclipses which should be free from any obvious source of systematic errors.  相似文献   
159.
Book review     
Z. Švestka 《Solar physics》1975,45(2):543-543
  相似文献   
160.
The aim of the present paper will be to extend the Fourier methods of analysis of the light curves of eclipsing binaries, outlined in our previous communication (Kopal, 1975) in connection with systems whose components would appear as uniformly bright discs, to systems whose components exhibit discs characterized by an arbitrary radially-symmetrical distribution of brightness —i.e., an arbitrary law of darkening towards the limb — be it linear or nonlinear.In Section 2 which follows a few brief introductory remarks, fundamental equations will be set up which govern the light changes arising from the mutual eclipses of limb-darkened stars — be such eclipses total, partial or annular; and Section 3 will contain a closed algebraic solution for the elements of the occulation eclipses terminating in total phase. Such a solution proves to be no more complicated than it turned out to be for uniformly bright discs in our previous paper; and calls for no special functions for the purpose — as will be put in proper perspective in the concluding Section 4.The cases of transit eclipses terminating in an annular phase, of partial eclipses of occulation or transit type, will be similarly dealt with by Fourier methods in the next paper of the present series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号