首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   36篇
  国内免费   62篇
测绘学   36篇
大气科学   22篇
地球物理   48篇
地质学   160篇
海洋学   14篇
天文学   3篇
综合类   11篇
自然地理   17篇
  2024年   4篇
  2023年   8篇
  2022年   18篇
  2021年   11篇
  2020年   7篇
  2019年   17篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   18篇
  2014年   11篇
  2013年   10篇
  2012年   9篇
  2011年   11篇
  2010年   8篇
  2009年   11篇
  2008年   11篇
  2007年   4篇
  2006年   9篇
  2005年   9篇
  2004年   6篇
  2003年   2篇
  2002年   6篇
  2001年   12篇
  2000年   11篇
  1999年   9篇
  1998年   7篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   8篇
  1993年   3篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1964年   2篇
  1961年   1篇
  1959年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
301.
石英岩化学成分分析标准物质研制   总被引:4,自引:4,他引:0  
刘瑱  马玲  时晓露  查立新 《岩矿测试》2014,33(6):849-856
目前巴西、英国、日本、南非等国研制有一些石英岩类标准物质,SiO2含量均在96%以上,含量范围较窄,定值元素较少。我国尚无石英岩类的标准物质,无法满足石英岩勘查和实际应用的需要。本文研制了3个石英岩化学成分分析标准物质,样品采自我国具有代表性的安徽省凤阳县大庙镇老青山、青海省大通县景阳镇和湖北省蕲春县灵虬山三个石英矿区,利用流化床式气流粉碎机将样品细碎至-45 μm,解决了纯度较高的石英岩粉碎加工易受污染的难题。因石英岩样品难以压制成型,均匀性检验未采用压片制样X射线荧光光谱法,而是采用以电感耦合等离子体发射光谱法和电感耦合等离子体质谱法为主的检验方法。结果表明,方差检验的F值均小于临界值,证明其均匀性符合要求。为期两年的长期稳定性8次检验中未发现统计学意义上的明显变化,在颠震和极端温度条件下所检验的短期稳定性良好。经我国十家实验室使用多种分析方法联合定值,同时探索采用类似元素比较法获取未进行均匀性和稳定性检验的成分的相应不确定度分量,给出了36个成分的认定值(或参考值)和相应的不确定度。3个标准物质现已被批准为国家一级标准物质(编号GBW 07835、GBW 07836、GBW 07837),其主要成分SiO2的含量相应为92.93%、95.97%、99.18%,呈梯度分布。此系列标准物质具有样品粒度均匀、粒度分布范围窄(D25D75在4~16 μm之间),定值元素种类多,SiO2含量分布广泛的特点,可以满足石英岩样品化学成分分析过程中监控的需要。  相似文献   
302.
利用铸体薄片资料进行储层孔隙度演化定量计算是一项重要的成岩演化和储层模拟技术,但由于参数确定和计算方法存在的问题,导致结果准确性较差。基于此,在分析前人计算方法及其误差的基础上,确定了计算参数的选用,改进和完善了计算方法与结果检验方法的应用。在初始孔隙度的确定上,相对赋一固定值作为所有样品初始孔隙度或Scherer拟合公式,根据Beard和Weyl湿砂填集实验恢复初始孔隙度具有较高的精度;在考虑压实过程中岩石表观体积缩小的情况下,推导了压实、胶结损失孔隙度与溶蚀增加孔隙度计算公式,并给出了忽略岩石表观体积变化时孔隙度演化分析的误差来源和可能的误差大小范围;结果检验方面,摒弃了以往忽略溶蚀增加孔隙度而简单进行粒间孔隙度与和氦孔隙度对比的较为粗略的方法,建立了考虑各种成岩作用结果和成岩过程中岩石表观体积变化情况下的结果检验方法。应用该方法对鄂尔多斯盆地环江地区长8储层孔隙度演化进行计算,结果与岩芯氦孔隙度相比,绝对误差-1.1%,相对误差15.3%,取得了良好的应用效果。  相似文献   
303.
针对传统摄影测量理论对航线规划、飞行姿态、影像重叠等航摄条件要求高,无人机高效保障优势不明显的问题,本文借助计算机视觉理论,提出了一种稳健的运动恢复结构(SFM)技术。首先,利用李代数旋转平均方法,将空间旋转关系的矩阵表达形式转换为向量的线性表达形式;然后,在最小二乘平差之前,引入L1范数进行迭代初值优化,求解全局一致性旋转参数;最后,将位移和旋转参数的坐标系进行统一,实现匹配点三维坐标计算。试验结果表明,本文基于全局式SFM的无人机影像三维重建技术较传统摄影测量方法解算精度更高,三维点云重建效果更佳。在差分GPS摄站坐标辅助的光束法平差下,点位测量精度优于0.3 m;在不同航线布设条件下,影像解算的成功率均可达100%。  相似文献   
304.
305.
探讨生态地球化学评价湿沉降、悬浮物样品分析体系中,进行多元素含量测定的分析测试新方法及样品的制备技术。根据待测元素的不同,分别采用微波消解、酸溶、碱熔等方法进行样品制备,使用原子荧光光谱法、离子选择电极法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法等进行样品的测定。文章系统地建立了生态地球化学评价湿沉降、悬浮物样品的多元素分析体系,利用建立的方法对不同种类的国家标准物质进行测定,结果令人满意。  相似文献   
306.
针对快速天文测量中像素坐标与度盘坐标之间的高精度转换问题,通过引入水平角转换调节参数,构建了一个高精度的像素坐标与度盘坐标之间的转换模型。介绍了构建新模型的基本思路和标定的操作过程;利用图像全站仪的室内标定数据解算了模型转换参数,并与多种转换模型进行了对比;针对经过该模型转换后的度盘坐标和星间角距的精度,以及星间结构的稳定性,提出了3种检验方法。实验表明:与传统光学标定法相比,该文给出的方法能够明显提高天文观测原始数据的精度,且计算量小,效率更高。另外,操作者无需过多专业背景,理论上减小了因高度角变化引起的水平角测量偏差。  相似文献   
307.
华北克拉通北缘晚志留世末-早泥盆世碱性岩的成因研究可以为古生代古亚洲洋与华北克拉通的相互作用过程提供重要信息.本文以内蒙古达茂旗黄合少正长岩为研究对象,开展了锆石U-Pb年代学、矿物化学、地球化学和Sr-Nd同位素的研究,并综合同带其他代表性岩体的岩石矿物及元素特征,探讨了华北克拉通北缘钾质碱性岩的岩浆体系性质、源区特...  相似文献   
308.
本文提出了一种基于图卷积神经网络的偏微分方程空间离散化数值求解加速方法,并将该方法应用于求解一维平流方程的研究中,实现了一维平流方程的加速求解。并设计了基于图卷积的一维平流方程空间离散化神经网络模型(GCPNN),其在物理先验知识指导下基于图模型利用空间图结构特征进行一维平流方程空间离散化求解加速方案建模,在构建图结构关系过程中,基于物理先验知识建立邻接矩阵,利用邻接矩阵融合了全局信息,从而实现了一维平流方程的加速求解。并且通过设计对比实验和消融实验验证了基于GCPNN的求解器相较于基线求解器和CNN求解器在求解精度和计算成本方面的优势,且验证了加入物理先验知识指导及全局信息融合的有效性。  相似文献   
309.
针对利用数字照相天顶望远镜(DZT)测量地球自转参数中确定测站的瞬时天文坐标和国际地球参考架(ITRF)下的精确坐标问题,该文利用国家授时中心2017—2021年在丽江等多个台站的观测样机的长期测量数据,通过对分布在不同位置的多个测站的数据解算,分析了不同测站的坐标测量精度及对UT1测量的精度影响。基于2017—2021年的观测数据,进行DZT测量的精度分析。结果表明:几个测站的长期测量精度相近,天文经度长期测量标准差约为0.05 as,纬度方向为0.03 as,对UT1测量影响小于3.5 ms,该结果可为DZT测量ERP提供精确的初始坐标值。  相似文献   
310.
冰雷达是用于极地冰雪探测的主要技术手段,为研究极地冰雪的几何特征、内部结构、冰下地形地貌和冰底环境提供了重要的基础观测数据。20世纪50年代,人类首次发现特定频段的电磁波可以“穿透”南极冰盖,进而在60年代研制出用于极地冰盖冰下探测的冰雷达系统。之后60多年里,随着计算机、电子信息和卫星定位导航等技术的发展,冰雷达技术研究取得快速发展,形成了适用于极地冰盖、海冰及其上覆积雪不同探测需求的多样化冰雷达系统。本文在简要回顾了早期冰雷达技术发展的基础上,着重从极地冰盖深部探测、极地冰盖和海冰浅表层探测以及新型极地冰雪探测冰雷达技术3个方面,回顾总结了近10年来国内外主要进展。未来,为适应极地冰盖、海冰及其上覆积雪观测研究的多种需求,需要进一步提升冰雷达系统性能(探测深度、跨轨迹向分辨率、垂向分辨率等),并且研制满足新型平台(无人机、卫星等)搭载需求的小型、低功耗冰雷达系统,以及发展多通道、多频、多极化集同观测模式的综合冰雷达技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号