首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139087篇
  免费   2361篇
  国内免费   1074篇
测绘学   3448篇
大气科学   9553篇
地球物理   27140篇
地质学   50974篇
海洋学   12312篇
天文学   30641篇
综合类   468篇
自然地理   7986篇
  2022年   789篇
  2021年   1372篇
  2020年   1538篇
  2019年   1661篇
  2018年   4760篇
  2017年   4403篇
  2016年   4663篇
  2015年   2249篇
  2014年   3904篇
  2013年   6923篇
  2012年   4638篇
  2011年   6830篇
  2010年   5955篇
  2009年   7467篇
  2008年   6559篇
  2007年   6825篇
  2006年   5213篇
  2005年   4135篇
  2004年   4015篇
  2003年   3831篇
  2002年   3585篇
  2001年   3135篇
  2000年   3042篇
  1999年   2429篇
  1998年   2547篇
  1997年   2326篇
  1996年   1814篇
  1995年   1979篇
  1994年   1695篇
  1993年   1573篇
  1992年   1489篇
  1991年   1462篇
  1990年   1524篇
  1989年   1296篇
  1988年   1189篇
  1987年   1437篇
  1986年   1233篇
  1985年   1543篇
  1984年   1730篇
  1983年   1655篇
  1982年   1551篇
  1981年   1406篇
  1980年   1298篇
  1979年   1215篇
  1978年   1188篇
  1977年   1041篇
  1976年   1018篇
  1975年   980篇
  1974年   981篇
  1973年   1025篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
971.
It is shown that glauconite-bearing interbeds are widespread in the layer-by-layer studied sections on the Sea of Okhotsk coast (Mainach section) and Kheisliveem River valley (Kavran section), the volcanoterrigenous rocks of the Kovachin, Amanin, and Gakkhin formations of the Paleogene in western Kamchatka (Upper Eocene-Lower Oligocene boundary beds). Detailed mineralogical and structural-crystallochemical characteristics of glauconite from the Amanin Formation are presented. It is suggested that such glauconite should not be used for geochronological purposes.Some specific features of glauconite formation, particularly, the preservation of specific morphological forms at high accumulation rates of volcano-terrigenous rocks, are discussed. Possibility of the formation of glauconite with the active influence of bacterial metabolism is considered.  相似文献   
972.
973.
The Neogene Volcanic Province (NVP) within the Betic Cordillera (SE Spain) consists of three main metapelitic enclave suites (from SW to NE: El Hoyazo, Mazarrón and Mar Menor). Since the NVP represents a singular place in the world where crustal enclaves were immediately quenched after melting, their microstructures provide a “photograph” of the conditions at depth just after the moment of the melting.

The thermobarometric information provided by the different microstructural assemblages has been integrated with the geophysical and geodynamical published data into a model of the petrologic evolution of the Mar Menor enclaves. They were equilibrated at 2–3 kbar, 850–900 °C, and followed a sequence of heating melt producing reactions. A local cooling event evidenced by minor melt crystallization preceded the eruption.

The lower crustal studies presented in this work contribute to the knowledge of: (i) the partial melting event beneath the Mar Menor volcanic suite through a petrologic detailed study of the enclaves; (ii) how the microstructures of fast cooled anatectic rocks play an important role in tracing the magma evolution in a chamber up to the eruption, and how they can be used as pseudothermobarometers; (iii) the past and current evolution of the Alborán Domain (Betic Cordillera) and Mediterranean Sea, and how the base of a metapelitic crust has melted within an active geodynamic setting.  相似文献   

974.
Siliceous hot spring deposits from Steamboat Springs, Nevada, U.S.A., record a complex interplay of multiple, changing, primary environmental conditions, fluid overprinting and diagenesis. Consequently these deposits reflect dynamic geologic and geothermal processes. Two surface sinters were examined—the high terrace, and the distal apron-slope, as well as 13.11 m (43 ft) of core material from drill hole SNLG 87-29. The high terrace sinter consists of vitreous and massive-mottled silica horizons, while the distal deposit and core comprise dominantly porous, indurated fragmental sinters. Collectively, the three sinter deposits archive a complete sequence of silica phase diagenetic minerals from opal-A to quartz. X-ray powder diffraction analyses and infrared spectroscopy of the sinters indicate that the distal apron-slope consists of opal-A and opal-A/CT mineralogy; the core yielded opal-A/CT and opal-CT with minor opal-A; and the high terrace constitutes opal-C, moganite, and quartz. Mineralogical maturation of the deposit produced alternating nano–micro–nano-sized silica particle changes. Based on filament diameters of microbial fossils preserved within the sinter, discharging thermal outflows fluctuated between low-temperatures (< 35 °C, coarse filaments) and mid-temperatures ( 35–60 °C, fine filaments). Despite transformation to quartz, primary coarse and fine filaments were preserved in the high terrace sinter. AMS 14C dating of pollen from three horizons within core SNLG 87-29, from depths of 8.13 to 8.21 m (26′8″ to 26′11″), 10.13 to 10.21 m (33′3″ to 33′6″), and 14.81 to 14.88 m (48′7″ to 48′10″), yielded dates of 8684 ± 64 years, 11,493 ± 70 years and 6283 ±60 years, respectively. In the upper section of the core, the stratigraphically out-of-sequence age likely reflects physical mixing of younger sinter with quartzose sinter fragments derived from the high terrace. Within single horizons, mineralogical and morphological components of the sinter matrix were spatially patchy. Overall, the deposit was modified by sub-surface flow of alkali-chloride thermal fluids depositing a second generation of silica, and periodically, by acidic steam condensate formed during periods when the water table was low. Local faulting produced considerable fracturing of the sinter. Hence, the Steamboat Springs sinter experienced a complex history of primary and secondary hydrothermal, geologic and diagenetic events, and their inter-relationships and effects are locked within the physical, chemical and biological signatures of the deposit.  相似文献   
975.
The Eucla Basin including the vast Nullarbor Plain lies on the margins of the Yilgarn, Musgrave and Gawler cratons in southern Australia and owes its distinctive landscape to a unique set of interactions between eustatic, climatic and tectonic processes over the last ~ 50 Ma. Understanding of the history of the basin and the palaeovalleys that drained from the surrounding cratons are important because they contain major mineral deposits, and the sediments derived from them contain remobilised gold, uranium, and heavy minerals. In particular, a remarkably preserved palaeoshoreline sequence along the north-eastern margin of the Eucla Basin is highly prospective for heavy mineral placer deposits. The record of marine, marginal marine, estuarine, fluvial and lacustrine environments, as constrained mainly by an extensive borehole dataset, reflects major depositional events during the Palaeocene–Early Eocene, Middle–Late Eocene, Oligocene–Early Miocene, Middle Miocene–Early Pliocene and Pliocene–Quaternary. These events reflect the key role of eustatic sea-level variation which, during highstands, inundated the craton margins, flooding palaeovalleys to up to 400 km inboard of the present coastline. However, a systematic eastward migration of the depocentre across the Eucla Basin during the Neogene, together with apparent flow reversals in a number of palaeovalley systems draining the Gawler Craton, suggest that the Eucla Basin has also been subject to differential vertical movements, expressed as a west-side up, east-side down tilting of ~ 100–200 m. This differential movement forms part of a broader north-down–southwest-up dynamic topographic tilting of the Australian continent associated with relatively fast (6–7 cm/yr) northward plate motion since fast spreading commenced in the Southern Ocean at ~ 43 Ma. We suggest that the evolving dynamic topography field has played a key role in facilitating development of placer deposits, largely through multistage, eastward reworking of near-shore sequences during highstand transgressive cycles on a progressively tilting platform under the influence of persistent westerly weather systems.  相似文献   
976.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

977.
A relict mound of Holocene barite (BaSO4) tufa underlies the Flybye Springs, a small, barium‐rich, cold sulphur spring system in the Northwest Territories of Canada. The tufa is composed of relatively pure barite with ≤0·34 wt% Ca2+ and ≤0·77 wt% Sr2+. The mound is made up of coated bubble, raft, undulatory sheet, stromatolitic, coated grain and detrital conglomerate barite tufa. Although previously unreported in barite, these lithotypes are akin to facies found in many carbonate spring deposits. Raft and ooid‐coated grain tufa was formed via ‘inorganic’ barite precipitation in spring water ponds and tributaries where rapid oxidation of sulphide to sulphate established barite supersaturation. Undulatory sheet tufa may have formed by the reaction of dissolved barium with sulphate derived from the oxidation of extracellular polysaccharide‐rich colloidal sulphur films floating in oxygenated, barite‐saturated spring water ponds. Coated bubble, oncoid‐coated grain and stromatolitic tufa with filamentous microfossils was formed in close association with sulphur‐tolerant microbes inhabiting dysoxic and oxygenated spring water tributaries and ponds. Adsorption of dissolved barium to microbial extracellular polysaccharide probably facilitated the development of these ‘biogenic’ lithotypes. Detrital conglomerate tufa was formed by barite cementation of microdetrital tufa, allochthonous lithoclasts and organic detritus, including caribou hair. Biogenic textures, organic artefacts and microfossils in the Flybye barite tufa have survived diagenetic aggradational recrystallization and precipitation of secondary cements, indicating the potential for palaeoecological information to be preserved in barite in the geological record. Similarities between the Flybye barite tufa and carbonate spring deposits demonstrate that analogous textures can develop in chemical sedimentary systems with distinct mineralogy, biology and physiochemistry.  相似文献   
978.
Two sites in the eastern Fram Strait, the Vestnesa Ridge and the Yermak Plateau, have been surveyed and sampled providing a depositional record over the last glacial‐interglacial cycle. The Fram Strait is the only deep‐water connection from the Arctic Ocean to the North Atlantic and contains a marine sediment record of both high latitude thermohaline flow and ice sheet interaction. On the Vestnesa Ridge, the western Svalbard margin, a sediment drift was identified in 1226 m of water. Gravity and multicores from the crest of the drift recovered turbidites and contourites. 14C dating indicates an age range of 8287 to 26 900 years BP (Early Holocene to Late Weichselian). The Yermak Plateau is characterized by slope sediments in 961 m of water. Gravity and multicores recovered contourites and hemipelagites. 14C ages were between 8615 and 46 437 years BP (Early Holocene to mid‐Weichselian). Downcore dinoflagellate cyst analyses from both sites provide a record of changing surface water conditions since the mid‐Weichselian, suggesting variable sea ice extent, productivity and polynyas present even during the Last Glacial Maximum. Four layers of ice‐rafted debris were also identified and correlated within the cores. These events occurred ca at 9, 24 to 25, 26 to 27 and 43 ka, asynchronous with Heinrich layers in the wider north‐east Atlantic and here interpreted as reflecting instability in the Svalbard/Barents Ice sheet and the northward advection of warm Atlantic water during the Late Weichselian. The activity of the ancestral West Spitsbergen Current is interpreted using mean sortable silt records from the cores. On the Vestnesa Ridge drift the modern mass accumulation rate, calculated using excess 210Pb, is 0·076 g cm?2 year?1. On the Yermak Plateau slope the modern mass accumulation rate is 0·053 g cm?2 year?1.  相似文献   
979.
Some rare types of small clinoforms found in the latest continental deposits of lowland platform and mountain regions are described. The clinoforms are represented by prodelta deposits of mountain lakes, oblique-bedded horizons of floodplain alluvium of strongly meandering rivers, thick and short lenses of mountain alluvium, and alluvium horizons of great lowland rivers with oblique bedding grading into horizontal bedding. Such structures bear information on paleogeographic, morphological, and lithodynamic features of continental sedimentation.  相似文献   
980.
The Mordor Alkaline Igneous Complex (MAIC) is a composite intrusion comprising a body of syenite and a funnel-shaped layered mafic–ultramafic intrusion of lamprophyric parentage, the Mordor Mafic–Ultramafic Intrusion or MMUI. The MMUI is highly unusual among intrusions of lamprophyric or potassic parentage in containing primary magmatic platinum-group element (PGE)-enriched sulfides. The MMUI sequence consists largely of phlogopite-rich pyroxenitic cumulates, with an inward dipping conformable layer of olivine-bearing cumulates divisible into a number of cyclic units. Stratiform-disseminated sulfide accumulations are of two types: disseminated layers at the base of cyclic units, with relatively high PGE tenors; and patchy PGE-poor disseminations within magnetite-bearing upper parts of cyclic units. Sulfide-enriched layers at cycle bases contain anomalous platinum group element contents with grades up to 1.5 g/t Pt+Pd+Au over 1-m intervals, returning to background values of low parts per billion (ppb) on a meter scale. They correspond to reversals in normal fractionation trends and are interpreted as the result of new magma influxes into a continuously replenished magma chamber. Basal layers have decoupled Cu and PGE peaks reflecting increasing PGE tenors up-section, due to increasing R factors during the replenishment episode, or progressive mixing of between resident PGE-poor magma and more PGE-enriched replenishing magma. The presence of PGE enriched sulfides in cumulates from a lamprophyric magma implies that low-degree partial melts do not necessarily leave sulfides and PGEs in the mantle restite during partial melting. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号