首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   8篇
大气科学   6篇
地球物理   1篇
地质学   8篇
海洋学   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2013年   1篇
  1996年   1篇
  1990年   1篇
  1984年   1篇
  1981年   2篇
  1976年   1篇
  1973年   2篇
排序方式: 共有16条查询结果,搜索用时 0 毫秒
11.
赞比亚东北部伊鲁米德带是一个北东向延伸的中元古代构造活动带,起自赞比亚中部,向北东一直延伸至赞比亚-坦桑尼亚边境,并进入马拉维北部;其东北部以古元古代乌本迪构造带为界;西北部以班韦乌卢地块为界;西部和西南部受新元古代的达马拉-卢菲利安弧-赞比西构造事件的影响.Kachinga长石砂岩位于伊鲁米德带的东北部伊索卡南部.本文获得Kachinga长石砂岩的416颗碎屑锆石U-Pb年龄多集中在1749±25~1920±23Ma之间,Kachinga长石砂岩的形成时代可能晚于1331±26Ma,属于中元古代.Kachinga长石砂岩碎屑锆石CL图像表明,大部分锆石为岩浆结晶锆石,少部分锆石颗粒为增生-混合型锆石,表明其经历了多期构造-热事件的改造.锆石中存在有一部分磨圆度较好的颗粒,表明其经历了多次搬运和沉积过程,从而指示了古老沉积岩为Kachinga长石砂岩提供了物源.主量元素、微量元素和稀土元素构造环境判别及物源分析表明了Kachinga长石砂岩物源主要为上地壳大陆长英质源区,并且可能混有古老沉积物成分,物源区构造背景为大陆岛弧环境.  相似文献   
12.
This paper includes a comprehensive assessment of 40 models from the Coupled Model Intercomparison Project phase 5 (CMIP5) and 33 models from the CMIP phase 6 (CMIP6) to determine the climatological and seasonal variation of ocean salinity from the surface to 2000 m. The general pattern of the ocean salinity climatology can be simulated by both the CMIP5 and CMIP6 models from the surface to 2000-m depth. However, this study shows an increased fresh bias in the surface and subsurface salinity in the CMIP6 multimodel mean, with a global average of ?0.44 g kg?1 for the sea surface salinity (SSS) and ?0.26 g kg?1 for the 0–1000-m averaged salinity (S1000) compared with the CMIP5 multimodel mean (?0.25 g kg?1 for the SSS and ?0.07 g kg?1 for the S1000). In terms of the seasonal variation, both CMIP6 and CMIP5 models show positive (negative) anomalies in the first (second) half of the year in the global average SSS and S1000. The model-simulated variation in SSS is consistent with the observations, but not for S1000, suggesting a substantial uncertainty in simulating and understanding the seasonal variation in subsurface salinity. The CMIP5 and CMIP6 models overestimate the magnitude of the seasonal variation of the SSS in the tropics in the region 20°S–20°N but underestimate the magnitude of the seasonal change in S1000 in the Atlantic and Indian oceans. These assessments show new features of the model errors in simulating ocean salinity and support further studies of the global hydrological cycle.  相似文献   
13.
The objective of this study is to locate as closely as possible the sites of strontium, magnesium, sodium, and potassium in modern aragonitic corals, specifically whether these cations are adsorbed, or are substituted in the carbonate lattice or are incorporated in organic components. In addition to locating the sites of each of these four elements we wanted to find out quantitatively how much of each element occurs at each site. The experiments in this study are based on the dissolution rate of aragonite in distilled water and on the substitution of strontium and magnesium by calcium and sodium. Special attention has been given to the occurrence of strontium, magnesium, sodium, and potassium in the organic components of the corals. The main site for strontium in the corals is in the aragonite lattice. Twenty-five per cent of the total magnesium occurs in adsorbed sites and in organic compounds. The rest of the magnesium may be located in the aragonite lattice, but it is easily removed by repeated leaching or by replacement with calcium ions. Another possibility is that magnesium may occur in a dispersed mineral phase more soluble than aragonite because magnesium was released at a higher Mg to Ca ratio than is found in the solid coral; also because no local concentration of magnesium could be detected with an electron microprobe. About 12% of the total sodium is in adsorbed sites and is included in the organic compounds. The rest of the sodium might be in the lattice replacing calcium, but the low total exchange capacity is not enough to provide the needed charge balance. Another possibility is that sodium is located in a proposed mineral phase. Potassium is in adsorbed sites and incorporated in the organic compounds to an extent greater than all the other elements studied (30% of the total potassium), but again the evidence suggests that the remaining potassium is in a proposed mineral phase. Calcite is detected on the surfaces of aragonite corals after 5 months in the substitution experiment. The change of argonite to calcite took place after the inhibitor magnesium was exchanged from the surface sites and replaced by calcium. The organic compounds in corals contain small amounts of strontium, magnesium, sodium and potassium. Strontium is preferentially enriched in the organic compounds over magnesium.  相似文献   
14.
Based on a statistical analysis of monthly data for 1958-73, the East Equatorial Pacific centered at 130°W is considered as a key region for global climate variation, When the region is warm, the latent heat from the sea surface increases and the semipermanent systems in the golbal atmosphere become more active.  相似文献   
15.
Kornerupine and associated minerals in 31 samples of high-graderocks relatively rich in Al and Mg were analysed by wet chemistry,ion microprobe mass analyser, electron microprobe and X-raypowder diffraction. For 11 samples of kornerupine and threesamples of biotite (F only) analysed by both wet chemical andion microprobe methods, the best agreement was obtained forB2O3, whereas the ion microprobe Li2O values were systematicallysomewhat higher than the wet chemical values. The wet chemicalmethods give Li2O=0–0?19 wt.%; BeO=0–0?032 wt.%;B2O3=0–4?01 wt.%; and F=0?07–0?77 wt.% in kornerupine,whereas ion microprobe analyses on other kornerupines give valuesup to 0?35 wt.% Li2O, O066 wt.% BeO, and 4?72 wt.% B2O3. Thesum B+Al+Fe3++Cr is close to 6?9 atoms per 22 (O, OH, F) or21?5 (O) in kornerupine. In general, Li/Fe ratios decrease as follows: kornerupine ?sapphirinebiotite> Crd (Na<0?03 per 18 oxygens)>tourmaline, garnet,orthopyroxene. However, for cordierite with Na>004, Li/Fedecreases as follows: cordierite>kornerupine. Sapphirineand sillimanite are the only associated minerals to incorporatesignificant boron (0?1–0?85 wt.% B2O3) and then only whenthe single site for B in kornerupine is approaching capacity.Sillimanite B2O3 contents increase regularly with kornerupineF. Fractionation of fluorine increases as follows: kornerupine<biotite<tourmaline,and Kkrn-BtD=(F/OH)Krn/(F/(OH)Bt (assuming ideal anion composition)increases with biotite Ti. Kornerupine B2O3 content is a measureof B2O3 activity in associated metamorphic fluid, whereas sillimaniteB2O3 content increases with temperature, exceeding 0?4 wt.%whenT=900?C at very low water activities. New data on 11 kornerupines and literature data indicate thatthe unit cell parameters a, c, and V decrease with increasingB content and b, c, and V increase with increasing Fe3+ content.In Fe3+-poor kornerupines, b increases with Mg and with (Mg+ Fe2+) but the effect of Mg on b via the substitution VIMg+IVSi=VIAl+IVAloverwhelms the effect of Fe2+=Mg substitution.  相似文献   
16.
The increasing heat-trapping gases emitted by human activities into the atmosphere produce an energy imbalance between incoming solar radiation and outgoing longwave radiation that leads to global heating(Rhein et al.,2013;Trenberth et al.,2014;von Schuckmann et al.,2016).The vast majority of global warming heat ends up deposited in the world’s oceans,and ocean heat content(OHC)change is one of the best—if not the best—metric for climate change(Cheng et al.,2019).In 2018,continued record heat was measured in the Earth’s climate system.In fact,2018 has set a new record of ocean heating,surpassing 2017,which was the previous warmest year ever recorded(Cheng et al.,2018)(Fig.1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号