首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   57篇
  国内免费   15篇
测绘学   24篇
大气科学   25篇
地球物理   175篇
地质学   285篇
海洋学   57篇
天文学   63篇
综合类   22篇
自然地理   32篇
  2023年   3篇
  2022年   13篇
  2021年   10篇
  2020年   7篇
  2019年   17篇
  2018年   44篇
  2017年   41篇
  2016年   53篇
  2015年   39篇
  2014年   43篇
  2013年   62篇
  2012年   44篇
  2011年   36篇
  2010年   26篇
  2009年   29篇
  2008年   20篇
  2007年   25篇
  2006年   18篇
  2005年   15篇
  2004年   17篇
  2003年   21篇
  2002年   15篇
  2001年   13篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1970年   2篇
排序方式: 共有683条查询结果,搜索用时 187 毫秒
91.
This paper will discuss the computerised development control and approval system being developed for the Planning and Development Control Department, City Hall of Kuala Lumpur, with stress on the GIS architecture developed within the system. The prospects and challenges towards implementation of the system are also discussed.  相似文献   
92.
The UNEP in its regional seas program in 1989 has included Pakistan in a group of countries which are vulnerable to the impact of rising sea level. If the present trend of sea level rise (SLR) at Karachi continues, in the next 50 years the sea level rise along the Pakistan Coast will be 50 mm (5 cm). Since the rising rates of sea level at Karachi are within the global range of 1-2 mm/year, the trends may be treated as eustatic SLR. Historical air temperature and sea surface temperature (SST) data of Karachi also show an increasing pattern and an increasing trend of about 0.67°C has been registered in the air temperature over the last 35 years, whereas the mean SST in the coastal waters of Karachi has also registered an increasing trend of about 0.3°C in a decade. Sindh coastal zone is more vulnerable to sea level rise than Baluchistan coast, as uplifting of the coast by about 1-2 mm/year due to subduction of Indian Ocean plate is a characteristic of Baluchistan coast. Within the Indus deltaic creek system, the area nearby Karachi is more vulnerable to coastal erosion and accretion than the other deltaic region, mainly due to human activities together with natural phenomena such as wave action, strong tidal currents, and rise in sea level. Therefore, The present article deals mainly with the study of dynamical processes such as erosion and accretion associated with sea level variations along the Karachi coast and surrounding Indus deltaic coastline. The probable beach erosion in a decade along the sandy beaches of Karachi has been estimated. The estimates show that 1.1 mm/year rise in sea level causes a horizontal beach loss of 110 mm per year. Therefore, coast eroded with rise in sea level at Karachi and surrounding sandy beaches would be 1.1 m during a period of next 10 years. The northwestern part of Indus delta, especially the Gizri and Phitti creeks and surrounding islands, are most unstable. Historical satellite images are used to analyze the complex pattern of sediment movements, the change in shape of coastline, and associated erosion and accretion patterns in Bundal and Buddo Islands. The significant changes in land erosion and accretion areas at Bundal and Buddo Islands are evident and appear prominently in the images. A very high rate of accretion of sediments in the northwestern part of Buddo Island has been noticed. In the southwest monsoon season the wave breaking direction in both these islands is such that the movement of littoral drift is towards west. Erosion is also taking place in the northeastern and southern part of Bundal Island. The erosion in the south is probably due to strong wave activities and in the northeast is due to strong tidal currents and seawater intrusion. Accretion takes place at the northwest and western parts of Bundal Island. By using the slope of Indus delta, sea encroachment and the land area inundation with rising sea level of 1 m and 2 m have also been estimated.  相似文献   
93.
No baseline existed for the radionuclides in Kuwait territorial water. With changing trend in the region to embrace nuclear energy, the baseline study is imperative to create a reference and to record the influence-functioning of upcoming power plants. The first one in Bushehr, Iran is ready to start and several more are likely to come-up in UAE, Saudi Arabia and Kuwait. The present baseline concentration of the four considered radionuclide's show low concentration of tritium, polonium, strontium and cesium; their concentration is comparable to most oceanic waters.  相似文献   
94.
Concentrated flow is often the dominant source of water erosion following disturbance on rangelands. Because of the lack of studies that explain the hydraulics of concentrated flow on rangelands, cropland‐based equations have typically been used for rangeland hydrology and erosion modeling, leading to less accurate predictions due to different soil and vegetation cover characteristics. This study investigates the hydraulics of concentrated flow using unconfined field experimental data over diverse rangeland landscapes within the Great Basin Region, United States. The results imply that the overall hydraulics of concentrated flow on rangelands differ significantly from those of cropland rills. Concentrated flow hydraulics on rangelands are largely controlled by the amount of cover or bare soil and hillslope angle. New predictive equations for concentrated flow velocity (R2 = 0·47), hydraulic friction (R2 = 0·52), and width (R2 = 0·4) representing a diverse set of rangeland environments were developed. The resulting equations are applicable across a wide span of ecological sites, soils, slopes, and vegetation and ground cover conditions and can be used by physically‐based rangeland hydrology and erosion models to estimate rangeland concentrated flow hydraulic parameters. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   
95.
96.
97.
98.
99.
Over the past few decades, groundwater has become an essential commodity owing to increased demand as a result of growing population, industrialization, urbanization and so on. The water supply situation is expected to become more severe in the future because of continued unsustainable water use and projected change in hydrometeorological parameters due to climate change. This study is based on the integrated approach of remote sensing, geographical information system and multicriteria decision‐making techniques to determine the most important contributing factors that affect the groundwater resources and to delineate the groundwater potential zones. Ten thematic layers, namely, geomorphology, geology, soil, topographic elevation (digital elevation model), land use/land cover, drainage density, lineament density, proximity of surface water bodies, surface temperature and post‐monsoon groundwater depth, were considered for the present study. These thematic layers were selected for groundwater prospecting based on the literature; discussion with the experts of the Central Ground Water Board, Government of India; field observations; geophysical investigation; and multivariate techniques. The thematic layers and their features were assigned suitable weights on Saaty's scale according to their relative significance for groundwater occurrence. The assigned weights of the layers and their features were normalized by using the analytic hierarchy process and eigenvector method. Finally, the selected thematic maps were integrated using a weighted linear combination method to create the final groundwater potential zone map. The final output map shows different zones of groundwater potential, namely, very good (16%), good (35%), moderate (28%) low (17%) and very low (2.1%). The groundwater potential zone map was finally validated using the discharge and groundwater depth data from 28 and 98 pumping wells, respectively, which showed good correlation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
100.
The Miocene to Modern Baram Delta Province is a highly efficient source to sink system that has accumulated 9 to 12 km of coastal–deltaic to shelf sediments over the past 15 Myr. Facies analysis based on ca 1 km of total vertical outcrop stratigraphy, combined with subsurface geology and sedimentary processes in the present‐day Baram Delta Province, suggests a ‘storm‐flood’ depositional model comprising two distinct periods: (i) fair‐weather periods are dominated by alongshore sediment reworking and coastal sand accumulation; and (ii) monsoon‐driven storm periods are characterized by increased wave‐energy and offshore‐directed downwelling storm flow that occur simultaneously with peak fluvial discharge caused by storm precipitation (‘storm‐floods’). The modern equivalent environment has the following characteristics: (i) humid‐tropical monsoonal climate; (ii) narrow (ca <100 km) and steep (ca 1°), densely vegetated, coastal plain; (iii) deep tropical weathering of a mudstone‐dominated hinterland; (iv) multiple independent, small to moderate‐sized (102 to 105 km2) drainage basins; (v) predominance of river‐mouth bypassing; and (vi) supply‐dominated shelf. The ancient, proximal part of this system (the onshore Belait Formation) is dominated by strongly cyclical sandier‐upward successions (metre to decametre‐scale) comprising (from bottom to top): (i) finely laminated mudstone with millimetre‐scale silty laminae; (ii) heterolithic sandstone–mudstone alternations (centimetre to metre‐scale); and (iii) sharp‐based, swaley cross‐stratified sandstone beds and bedsets (metre to decimetre‐scale). Gutter casts (decimetre to metre‐scale) are widespread, they are filled with swaley cross‐stratified sandstone and their long axes are oriented perpendicular to the palaeo‐shoreline. The gutter casts and other associated waning‐flow event beds suggest that erosion and deposition was controlled by high‐energy, offshore‐directed, oscillatory‐dominated, sediment‐laden combined flows within a shoreface to delta front setting. The presence of multiple river mouths and exceptionally high rates of accommodation creation (characteristic of the Neogene to Recent Baram Delta Province; up to 3000 m Ma−1), in a ‘storm‐flood’‐dominated environment, resulted in a highly efficient and effective offshore‐directed sediment transport system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号