首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   3篇
  国内免费   4篇
测绘学   1篇
大气科学   13篇
地球物理   24篇
地质学   48篇
海洋学   36篇
天文学   15篇
综合类   5篇
自然地理   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   8篇
  2009年   14篇
  2008年   8篇
  2007年   7篇
  2006年   7篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1971年   3篇
排序方式: 共有146条查询结果,搜索用时 31 毫秒
31.
Summary. The upper boundary of the descending oceanic plate is located by using PS -waves (converted from P to S at the boundary) in the Tohoku District, the north-eastern part of Honshu, Japan. the observed PS-P time data are well explained by a two-layered oceanic plate model composed of a thin low-velocity upper layer whose thickness is less than 10 km and a thick high-velocity lower layer; the upper and lower layers respectively have 6 per cent lower and 6 per cent higher velocity than the overriding mantle. the estimated location of the upper boundary is just above the upper seismic plane of the double-planed deep seismic zone. This result indicates that events in the upper seismic plane, at least in the depth range from 60 to 150 km, occur within the thin low-velocity layer on the surface of the oceanic plate.  相似文献   
32.
33.
We found that the suppression of signals for 88Sr, 140Ce and 238U in rock solution caused by rock matrix in ICP-MS (matrix effects) was reduced at high power operation (1.7 kW) of the ICP. To make the signal suppression by the matrix negligible, minimum dilution factors (DF) of the rock solution for Sr, Ce and U were 600, 400 and 113 at 1.1, 1.4 and 1.7 kW, respectively. Based on these findings, a rapid and precise determination method for Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U using FI (flow injection)-ICP-MS was developed. The amount of the sample solution required for FI-ICP-MS was 0.2 ml, so that 1.8 mg sample was sufficient for analysis with a detection limit of several ng g-1. Using this method, we determined the trace element concentrations in the USGS rock reference materials, DTS-1, PCC-1, BCR-1 and AGV-1, and the GSJ rock reference materials, JP-1, JB-1, -2, -3, JA-1, -2 and -3. The reproducibilities (RSD %) in replicate analyses (n=5) of BCR-1, AGV-1, JB-1, -2, -3, JA-1, -2, and -3 were < 6 %, and typically 2.5%. The difference between the average concentrations of this study for BCR-1 and those of the reference values were < 2%. Therefore, it was concluded that the method can give reliable data for trace elements in silicate rocks.  相似文献   
34.
35.
The present study deals with the elucidation of sterol composition of the marine sediments in Kagoshima Bay. The identification of each sterol was performed by gas-liquid chromatography, Ag+ impregnated column chromatography, mass spectrometry, and nuclear magnetic resonance spectrometry. The sediment obtained near the estuary of River Koutsuki contained large portions of 5-stanols such as coprostanol and 24-ethylcoprostanol basides 5-stanols such as cholestanol, 24-methylcholestanol, and 24-ethylcholestanol in the sterol fraction. These 5-stanols in the marine sediment may be derived from the fecal contamination by domestic sewages.  相似文献   
36.
Distributions and characteristics of water mass and chlorofluorocarbons (CFCs) in the North Pacific are investigated by using a General Circulation Model (GCM). The anthropogenic CO2 uptake by the ocean is estimated with velocity fields derived from the GCM experiments. The sensitivity of the uptake to different diffusion parameterizations and different surface forcing used in the GCM is investigated by conducting the three GCM experiments; the diffusive processes are parameterized by horizontal and vertical eddy diffusion which is used in many previous models (RUN1), parameterized by isopycnal diffusion (RUN2), and isopycnal diffusion and perpetual winter forcing for surface temperature and salinity (RUN3). Realistic features for water masses and CFCs can be simulated by the isopycnal diffusion models. The horizontal and vertical diffusion model fails to simulate the salinity minimum and realistic penetration of CFCs into the ocean. The depth of the salinity minimum layer is better simulated under the winter forcing. The results suggest that both isopycnal parameterization and winter forcing are crucial for the model water masses and CFCs simulations. The oceanic uptake of anthropogenic CO2 in RUN3 is about 19.8 GtC in 1990, which is larger by about 10% than that in RUN1 with horizontal and vertical diffusive parameterization. RUN3 well simulates the realistic water mass structure of the intermediate layer considered as a candidate of oceanic sink for anthropogenic CO2. The results suggest that the previous models with horizontal and vertical diffusive parameterization may give the oceanic uptake of anthropogenic CO2 underestimated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
37.
The temperature in the optically thick interior of protoplanetary discs is essential for the interpretation of millimetre observations of the discs, for the vertical structure of the discs, for models of the disc evolution and the planet formation, and for the chemistry in the discs. Since large icy grains have a large albedo even in the infrared, the effect of scattering of the diffuse radiation in the discs on the interior temperature should be examined. We have performed a series of numerical radiation transfer simulations, including isotropic scattering by grains with various typical sizes for the diffuse radiation as well as for the incident stellar radiation. We also have developed an analytic model including isotropic scattering to understand the physics concealed in the numerical results. With the analytic model, we have shown that the standard two-layer approach is valid only for grey opacity (i.e. grain size ≳10 μm) even without scattering. A three-layer interpretation is required for grain size ≲10 μm. When the grain size is 0.1–10 μm, the numerical simulations show that the isotropic scattering reduces the temperature of the disc interior. This reduction is nicely explained by the analytic three-layer model as a result of the energy loss by scatterings of the incident stellar radiation and of the warm diffuse radiation in the disc atmosphere. For grain size ≳10 μm (i.e. grey scattering), the numerical simulations show that the isotropic scattering does not affect the interior temperature. This is nicely explained by the analytic two-layer model; the energy loss by scattering in the disc atmosphere is exactly offset by the 'green-house effect' due to the scattering of the cold diffuse radiation in the interior.  相似文献   
38.
Abstract— The high‐pressure polymorphs of olivine, pyroxene, and plagioclase in or adjacent to shock melt veins (SMVs) in two L6 chondrites (Sahara 98222 and Yamato 74445) were investigated to clarify the related transformation mechanisms and to estimate the pressure‐temperature conditions of the shock events. Wadsleyite and jadeite were identified in Sahara 98222. Wadsleyite, ringwoodite, majorite, akimotoite, jadeite, and lingunite (NaAlSi3O8‐hollandite) were identified in Yamato 74445. Wadsleyite nucleated along the grain boundaries and fractures of original olivine. The nucleation and growth of ringwoodite occurred along the grain boundaries of original olivine, and as intracrystalline ringwoodite lamellae within original olivine. The nucleation and growth of majorite took place along the grain boundaries or fractures in original enstatite. Jadeite‐containing assemblages have complicated textures containing “particle‐like,” “stringer‐like,” and “polycrystalline‐like” phases. Coexistence of lingunite and jadeite‐containing assemblages shows a vein‐like texture. We discuss these transformation mechanisms based on our textural observations and chemical composition analyses. The shock pressure and temperature conditions in the SMVs of these meteorites were also estimated based on the mineral assemblages in the SMVs and in comparison with static high‐pressure experimental results as follows: 13–16 GPa, >1900 °C for Sahara 98222 and 17–24 GPa, >2100 °C for Yamato 74445.  相似文献   
39.
A method to determine F and Cl in silicate materials by employing pyrohydrolysis and ion chromatography (IC) is described. Pyrohydrolysis involved mixing a pulverised sample (∼ 40 mg) with V2O5 (∼ 160 mg) and heating to 1100 °C under a wet oxygen flow in a quartz tube. Recovery yields of F and Cl were ∼ 97% using a NaF + NaCl standard solution. Detection limits of the pyrohydrolysis-IC method for silicate samples were 0.36 and 0.69 μg g-1 for F and Cl, respectively. Fluorine and Cl concentrations were determined in the reference materials JB-2, JB-3 and JA-1 from the GSJ; BCR-2, BHVO-1, BHVO-2, AGV-1 and AGV-2 from the USGS; and NIST SRM 610, 612 and 614 glasses. Precisions (RSD) for determinations of F were 1–13% (except NIST SRM 614) and 2–19% for Cl, and were dependent on the concentration and blank correction. Most results obtained in this study were in good agreement with those of previous studies. In comparison, the Na2CO3 + ZnO fusion method at 900 °C showed that the yields of F and Cl by alkaline fusion systematically decreased with fusion duration time. The yields were 84% and 83% for JB-3, inferring that F and Cl were lost in this alkaline fusion.  相似文献   
40.
This paper briefly presents the West African Monsoon (WAM) Modeling and Evaluation Project (WAMME) and evaluates WAMME general circulation models’ (GCM) performances in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales in the first WAMME experiment. The analyses indicate that models with specified sea surface temperature generally have reasonable simulations of the pattern of spatial distribution of WAM seasonal mean precipitation and surface temperature as well as the averaged zonal wind in latitude-height cross-section and low level circulation. But there are large differences among models in simulating spatial correlation, intensity, and variance of precipitation compared with observations. Furthermore, the majority of models fail to produce proper intensities of the African Easterly Jet (AEJ) and the tropical easterly jet. AMMA Land Surface Model Intercomparison Project (ALMIP) data are used to analyze the association between simulated surface processes and the WAM and to investigate the WAM mechanism. It has been identified that the spatial distributions of surface sensible heat flux, surface temperature, and moisture convergence are closely associated with the simulated spatial distribution of precipitation; while surface latent heat flux is closely associated with the AEJ and contributes to divergence in AEJ simulation. Common empirical orthogonal functions (CEOF) analysis is applied to characterize the WAM precipitation evolution and has identified a major WAM precipitation mode and two temperature modes (Sahara mode and Sahel mode). Results indicate that the WAMME models produce reasonable temporal evolutions of major CEOF modes but have deficiencies/uncertainties in producing variances explained by major modes. Furthermore, the CEOF analysis shows that WAM precipitation evolution is closely related to the enhanced Sahara mode and the weakened Sahel mode, supporting the evidence revealed in the analysis using ALMIP data. An analysis of variability of CEOF modes suggests that the Sahara mode leads the WAM evolution, and divergence in simulating this mode contributes to discrepancies in the precipitation simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号