首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   26篇
  国内免费   15篇
测绘学   6篇
大气科学   24篇
地球物理   154篇
地质学   190篇
海洋学   160篇
天文学   94篇
综合类   8篇
自然地理   29篇
  2023年   4篇
  2021年   20篇
  2020年   9篇
  2019年   27篇
  2018年   13篇
  2017年   16篇
  2016年   18篇
  2015年   4篇
  2014年   30篇
  2013年   27篇
  2012年   17篇
  2011年   21篇
  2010年   26篇
  2009年   32篇
  2008年   30篇
  2007年   38篇
  2006年   30篇
  2005年   37篇
  2004年   16篇
  2003年   19篇
  2002年   9篇
  2001年   19篇
  2000年   15篇
  1999年   22篇
  1998年   13篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   11篇
  1977年   5篇
  1976年   2篇
  1974年   5篇
  1972年   2篇
  1970年   2篇
排序方式: 共有665条查询结果,搜索用时 109 毫秒
661.
In the Ariake Sea, dike construction in Isahaya Bay in 1997 for reclamation and disaster prevention was thought to cause big anthropogenic impacts on the marine ecosystem. Currently, hypoxia or anoxia occurs every summer in Isahaya Bay and the inner Ariake Sea. However, the effects of the dike construction on the DO concentration are unclarified. The present study evaluated the impact of the dike construction on the DO concentration by applying a numerical ecosystem model. The present calculation showed that the dike construction could affect the DO concentration in summer in a wider area than reported before in the steady state with a neap-spring tidal cycle. In Isahaya Bay, the dike construction caused a decrease of DO concentration greater than 2.0 mg l?1 , due to the decrease in DO supply from the  vertical diffusion process with reduction of tidal current and the intensification of the density stratification. The dike construction also affected the DO concentration in the inner Ariake Sea by decreasing the DO concentration of the water transported by the estuarine circulation and the reduction of the diffusive supply of oxygen vertically with stratification enhanced by the dike construction. For the first time, this study showed with numerical simulation that the dike construction could affect the DO concentration in a wide area of the Ariake Sea.  相似文献   
662.
Shock‐induced features are abundantly observed in meteorites. Especially, shock veins, including high‐pressure minerals, characterize many kinds of heavily shocked meteorite. On the other hand, no high‐pressure phases have been yet reported from enstatite chondrites. We studied a heavily shocked EH3 chondrite, Asuka 10164, containing a vein, which comprises fragments of fine‐grained silicate and opaque minerals, and chondrules. In this vein, we found a silica polymorph, coesite. This is the first discovery of a high‐pressure phase in enstatite chondrites. Other high‐pressure polymorphs were not observed in the vein. The assemblages and chemical compositions of minerals, and the occurrence of coesite indicate that the vein was subjected to the high‐pressure and temperature condition at about 3–10 GPa and 1000 °C. The host also experienced heating for a short time under lower temperature conditions, from ~700 to ~1000 °C, based on the opaque minerals typical of EH chondrites and textural features. Although the pressure condition of the vein in this chondrite is much lower than those in the other meteorites, our results suggest that all major meteorite groups contain high‐pressure polymorphs. Heavy shock events commonly took place in the solar system.  相似文献   
663.
We report petrology and geochemistry of an achondrite EET 92023 and compare it with normal and anomalous eucrites. EET 92023 is an unbrecciated achondrite and shows a granular texture mainly composed of low‐Ca pyroxene and plagioclase, petrologically similar to normal cumulate eucrites such as Moore County. However, this rock contains a significant amount of kamacite and taenite not common in unbrecciated, crystalline eucrites. EET 92023 contains a significant amount of platinum group elements (PGEs) (ca. 10% of CI), several orders of magnitude higher than those of monomict eucrites. We suggest that the metallic phases carrying PGEs were incorporated by a projectile during or before igneous crystallization and thermal metamorphism. The projectile was likely to be an iron meteorite rather than chondritic materials, as indicated by the lack of olivine and the presence of free silica. Therefore, the oxygen isotopic signature is indigenous, rather than due to contamination of the projectile material with different oxygen isotopic compositions. A significant thermal event involving partial melting and metamorphism after the impact event indicates that EET 92023 records early impact events which took place shortly after the crust formation on a differentiated protoplanet when the crust was still hot.  相似文献   
664.
Shock pressure recorded in Yamato (Y)‐790729, classified as L6 type ordinary chondrite, was evaluated based on high‐pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host‐rock of Y‐790729 consists mainly of olivine, low‐Ca pyroxene, plagioclase, metallic Fe‐Ni, and iron‐sulfide with minor amounts of phosphate and chromite. A shock‐melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock‐melt vein. The shock pressure in the shock‐melt vein is about 14–23 GPa based on the phase equilibrium diagrams of high‐pressure polymorphs. Some plagioclase portions in the host‐rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11–19 GPa. The difference in pressure between the shock‐melt vein and host‐rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent‐body of Y‐790729 is calculated to be ~1.90 km s?1. The parent‐body would be at least ~10 km in size based on the incoherent formation mechanism of ringwoodite in Y‐790729.  相似文献   
665.
We present a methodological approach to detect heated soil on ancient sites, using magnetic measurements. The method is based on changes in magnetic signals of soil by heating. The following three types of soil were used for testing the method: silty soil (SS), weathered volcanic ash (WVA, = loam) and fairly fresh volcanic ash (VA) called Odori tephra. On heating above 250–600°C, the magnetic susceptibility and remanent magnetization intensity increased for the SS and WVA samples, reflecting chemical alteration of magnetic minerals (from goethites to magnetites through hematites). The VA sample showed no susceptibility change suggesting the absence of goethites within it. On heating below 250°C, only the intensities of all the samples increased. This is possibly due to acquisition of thermal remanent magnetization. The largest change of the magnetic signals was identified for the SS sample and the smallest one was seen for the VA sample. Therefore, the in situ susceptibility measurement, which is the nondestructive and indirect method, seems to be effective to detect heated soil for sites of aqueous deposits as the SS. On the other hand, for sites of aeolian deposits as the WVA (loam) and VA, the intensity measurement of collected soils seems to be the most reliable method to detect evidence of heating. The degree of the magnetic stability (coercivity) against progressive alternating-field demagnetization was also an important parameter, indicating whether the investigated soils were heated or unheated. © 1999 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号