首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1730篇
  免费   88篇
  国内免费   46篇
测绘学   59篇
大气科学   132篇
地球物理   369篇
地质学   614篇
海洋学   119篇
天文学   417篇
综合类   9篇
自然地理   145篇
  2024年   5篇
  2023年   13篇
  2022年   10篇
  2021年   34篇
  2020年   43篇
  2019年   40篇
  2018年   81篇
  2017年   69篇
  2016年   79篇
  2015年   75篇
  2014年   80篇
  2013年   115篇
  2012年   67篇
  2011年   99篇
  2010年   82篇
  2009年   97篇
  2008年   90篇
  2007年   94篇
  2006年   78篇
  2005年   61篇
  2004年   64篇
  2003年   49篇
  2002年   48篇
  2001年   36篇
  2000年   44篇
  1999年   34篇
  1998年   23篇
  1997年   25篇
  1996年   19篇
  1995年   12篇
  1994年   13篇
  1993年   11篇
  1992年   15篇
  1991年   8篇
  1990年   9篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   12篇
  1985年   14篇
  1984年   6篇
  1983年   10篇
  1982年   5篇
  1981年   7篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1977年   5篇
  1976年   5篇
  1973年   4篇
排序方式: 共有1864条查询结果,搜索用时 31 毫秒
51.
Arctic river basins are amongst the most vulnerable to climate change. However, there is currently limited knowledge of the hydrological processes that govern flow dynamics in Arctic river basins. We address this research gap using natural hydrochemical and isotopic tracers to identify water sources that contributed to runoff in river basins spanning a gradient of glacierization (0–61%) in Svalbard during summer 2010 and 2011. Spatially distinct hydrological processes operating over diurnal, weekly and seasonal timescales were characterized by river hydrochemistry and isotopic composition. Two conceptual water sources (‘meltwater’ and ‘groundwater’) were identified and used as a basis for end‐member mixing analyses to assess seasonal and year‐to‐year variability in water source dynamics. In glacier‐fed rivers, meltwater dominated flows at all sites (typically >80%) with the highest contributions observed at the beginning of each study period in early July when snow cover was most extensive. Rivers in non‐glacierized basins were sourced initially from snowmelt but became increasingly dependent on groundwater inputs (up to 100% of total flow volume) by late summer. These hydrological changes were attributed to the depletion of snowpacks and enhanced soil water storage capacity as the active layer expanded throughout each melt season. These findings provide insight into the processes that underpin water source dynamics in Arctic river systems and potential future changes in Arctic hydrology that might be expected under a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
52.
53.
In contrast to active tectonic settings, little is known about the potential feedback between surface processes and climate change in tectonically inactive cratonic regions. Here, we studied the driving forces of erosion and landscape evolution in the Kruger National Park in South Africa using cosmogenic nuclide dating. 10Be‐derived catchment‐wide erosion rates (~2 and ~10 mm ka?1) are similar in magnitude to erosion and rock uplift elsewhere in South Africa, suggesting that (1) rock uplift is solely the isostatic response to erosion and (2) the first‐order topography is likely of Cretaceous age. The topographic maturity is promoted by widespread exposure of rocks resistant to erosion. Our data, however, suggest that local variations in rock resistance lead to transient landscape changes, with local increases in relief and erosion rates.  相似文献   
54.
We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = ?0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.  相似文献   
55.
Boulders moving in flash floods cause considerable damage and casualties. More and bigger boulders move in flash floods than predicted from published theory. The interpretation of flow conditions from the size of large particles within flash flood deposits has, until now, generally assumed that the velocity (or discharge) is unchanging in time (i.e. flow is steady), or changes instantaneously between periods of constant conditions. Standard practice is to apply theories developed for steady flow conditions to flash floods, which are however inherently very unsteady flows. This is likely to lead to overestimates of peak flow velocity (or discharge). Flash floods are characterised by extremely rapid variations in flow that generate significant transient forces in addition to the mean‐flow drag. These transient forces, generated by rapid velocity changes, are generally ignored in published theories, but they are briefly so large that they could initiate the motion of boulders. This paper develops a theory for the initiation of boulder movement due to the additional impulsive force generated by unsteady flow, and discusses the implications.  相似文献   
56.
57.
58.
59.

Blackouts aggravate the situation during an extreme river-flood event by affecting residents and visitors of an urban area. But also rescue services, fire brigades and basic urban infrastructure such as hospitals have to operate under suboptimal conditions. This paper aims to demonstrate how affected people, critical infrastructure, such as electricity, roads and civil protection infrastructure are intertwined during a flood event, and how this can be analysed in a spatially explicit way. The city of Cologne (Germany) is used as a case study since it is river-flood prone and thousands of people had been affected in the floods in 1993 and 1995. Components of vulnerability and resilience assessments are selected with a focus of analysing exposure to floods, and five steps of analysis are demonstrated using a geographic information system. Data derived by airborne and spaceborne earth observation to capture flood extent and demographic data are combined with place-based information about location and distance of objects. The results illustrate that even fire brigade stations, hospitals and refugee shelters are within the flood scenario area. Methodologically, the paper shows how criticality of infrastructure can be analysed and how static vulnerability assessments can be improved by adding routing calculations. Fire brigades can use this information to improve planning on how to access hospitals and shelters under flooded road conditions.

  相似文献   
60.
The present paper focuses on heat and mass exchange processes in methane hydrate fragments during in situ displacement from the gas hydrate stability zone (GHSZ) to the water surface of Lake Baikal. After being extracted from the methane hydrate deposit at the lakebed, hydrate fragments were placed into a container with transparent walls and a bottom grid. There were no changes in the hydrate fragments during ascent within the GHSZ. The water temperature in the container remained the same as that of the ambient water (~3.5 °С). However, as soon as the container crossed the upper border of the GHSZ, first signs of hydrate decomposition and transformation into free methane gas were observed. The gas filled the container and displaced water from it. At 300 m depth, the upper and lower thermometers in the container simultaneously recorded noticeable decreases of temperature. The temperature in the upper part of the container decreased to –0.25 °С at about 200 m depth, after which the temperature remained constant until the water surface was reached. The temperature at the bottom of the container reached –0.25 °С at about 100 m depth, after which it did not vary during further ascent. These observed effects could be explained by the formation of a gas phase in the container and an ice layer on the hydrate surface caused by heat consumption during hydrate decomposition (self-preservation effect). However, steady-state simulations suggest that the forming ice layer is too thin to sustain the hydrate internal pressure required to protect the hydrate from decomposition. Thus, the mechanism of self-preservation remains unclear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号