首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   15篇
  国内免费   2篇
测绘学   2篇
大气科学   14篇
地球物理   100篇
地质学   171篇
海洋学   38篇
天文学   26篇
综合类   1篇
自然地理   10篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   14篇
  2019年   13篇
  2018年   22篇
  2017年   20篇
  2016年   20篇
  2015年   12篇
  2014年   19篇
  2013年   20篇
  2012年   17篇
  2011年   16篇
  2010年   20篇
  2009年   19篇
  2008年   14篇
  2007年   15篇
  2006年   13篇
  2005年   20篇
  2004年   8篇
  2003年   6篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1973年   1篇
  1969年   1篇
排序方式: 共有362条查询结果,搜索用时 31 毫秒
91.
Seagrasses are critically important components of many marine coastal and estuarine ecosystems, but are declining worldwide. Spatial change in distribution of eelgrass,Zostera marina L., was assessed at Bahía San Quintín, Baja California, Mexico, using a map to map comparison of data interpreted from a 1987 Satellite Pour l'Observation de la Terre multispectral satellite image and a 2000 Landsat Enhanced Thematic Mapping image. Eelgrass comprised 49% and 43% of the areal extent of the bay in 1987 and 2000, respectively. Spatial extent of eelgrass was 13% less (−321 ha) in 2000 than in 1987 with most losses occurring in subtidal areas. Over the 13-yr study period, there was a 34% loss of submerged eelgrass (−457 ha) and a 13% (+136 ha) gain of intertidal eelgrass. Within the two types of intertidal eelgrass, the patchy cover class (<85% cover) expanded (+250 ha) and continuous cover class (≥85% cover) declined (−114 ha). Most eelgrass losses were likely the result of sediment loading and turbidity caused by a single flooding event in winter of 1992–1993. Recent large-scale agricultural development of adjacent uplands may have exacerbated the effects of the flood. Oyster farming was not associated with any detectable losses in eelgrass spatial extent, despite the increase in number of oyster racks from 57 to 484 over the study period.  相似文献   
92.
The thermochemistry of jarosite-alunite and natrojarosite-natroalunite solid solutions was investigated. Members of these series were either coprecipitated or synthesized hydrothermally and were characterized by XRD, FTIR, electron microprobe analysis, ICP-MS, and thermal analysis. Partial alkali substitution and vacancies on the Fe/Al sites were observed in all cases, and the solids studied can be described by the general formula K1-x-yNay(H3O)xFezAlw(SO4)2(OH)6-3(3-z-w)(H2O)3(3-z-w). A strong preferential incorporation of Fe over Al in the jarosite/alunite structure was observed. Heats of formation from the elements, ΔH°f, were determined by high-temperature oxide melt solution calorimetry. The solid solutions deviate slightly from thermodynamic ideality by exhibiting positive enthalpies of mixing in the range 0 to +11 kJ/mol. The heats of formation of the end members of both solid solutions were derived. The values ΔH°f = −3773.6 ± 9.4 kJ/mol, ΔH°f = −4912.2 ± 24.2 kJ/mol, ΔH°f = −3734.6 ± 9.7 kJ/mol and ΔH°f = −4979.7 ± 7.5kJ/mol were found for K0.85(H3O)0.15Fe2.5(SO4)2(OH)4.5(H2O)1.5, K0.85(H3O)0.15Al2.5(SO4)2(OH)4.5(H2O)1.5, Na0.7(H3O)0.3Fe2.7(SO4)2(OH)5.1(H2O)0.9, and Na0.7(H3O)0.3Al2.7(SO4)2(OH)5.1(H2O)0.9 respectively. To our knowledge, this is the first experimentally-based report of ΔH°f for such nonstoichiometric alunite and natroalunite samples. These thermodynamic data should prove helpful to study, under given conditions, the partitioning of Fe and Al between the solids and aqueous solution.  相似文献   
93.
The study area is situated along the Zolotica river in NW Russia, located within the Kola–Dvyna Rift System in the Baltic Shield that developed during Meso and Neoproterozoic times. A 9-m thick section made up of shallow marine sediments of Upper Ediacaran age was sampled in this locality. Two volcaniclastic levels from the middle part of the section yielded an age of 556 Ma. (U/Pb SHRIMP-II on zircons). Two magnetic components were successfully isolated, component A (Decl = 157.1, Incl = 68.0, 95 = 1.9°, N = 575 in situ) carried by magnetite and component B (Decl = 120.3, Incl = − 31.7, 95 = 3.9°, N = 57, bedding corrected), carried by haematite. While component A is thought to represent a younger overprint direction, the in situ direction for component B on the other hand, is dissimilar to any expected younger direction and is considered to be primary magnetisation in origin, acquired during or soon after deposition of the sediments in the Late Ediacaran. The corresponding palaeomagnetic pole for component A in situ is located at Lon = 55.4°E, Lat = 31°N, A95 = 2.7° and for component B at Lon = 110°E, Lat = 28.3°S, A95 = 3.8°, N = 57. Combined with other palaeomagnetic poles of the same tectonostratigraphic unit an alternative apparent polar wander path for the Late Proterozoic–Early Palaeozoic of Baltica is proposed. Such an alternative path shows that after the mid Cryogenian (750 Ma), the poles that were situated over South Africa (p.d.c.) moved to the east until they reached Australia during the Late Ediacaran (555 Ma) where they remained approximately stationary until the beginning of the Cambrian (545 Ma). Finally, they moved to the northwest until they reached the Arabian Peninsula in the Early Ordovician. Palaeolatitudes indicate that Baltica situated near the equator from the Cryogenian through to the Ediacaran moving gradually to the south at c. 1 cm/yr. During the Late Early Ediacaran, the plate suddenly began to drift northward at c. 8 cm/yr and in the boundary with the Cambrian it was positioned in low to intermediate latitudes. Finally, Baltica began to move back to the south at c. 13 cm/yr until in the Early Ordovician, reaching intermediate to high southern latitudes.  相似文献   
94.
Dispersed organic matter (DOM) concentrates of C-rich rocks from areas with different metamorphic characteristics were studied by organic petrography, X-ray diffraction (XRD) and micro-Raman spectroscopy analysis. The concentrates contain several types of DOM with different morphologies, reflectance, X-ray diffraction and micro-Raman characteristics.Four different morphological types were identified in the two studied areas. The different types have different distributions and their reflectance is quite variable in the four types, with a dominance of the highest reflectance values in the DOM from the area with the highest metamorphic grade.XRD analyses of samples from the areas reveal the presence of fine graphite together with non-graphitised carbons.The Raman spectral profiles show the usual bands G (1582 cm−1) and D1 (1350 cm−1), on the first-order Raman spectrum, and S1 (2700 cm−1) on the second-order spectrum. Additional weaker bands, D2 (1620 cm−1), and more rarely D3 (1500 cm−1) and S2 (2900 cm−1), are present. These are characteristic for disordered carbons in the different types of DOM and in both studied areas. However, the Raman parameters (D1/G intensity area ratio and the frequency and width of G band) indicate variable degrees of organisation in all DOM types.The existence of different types of DOM with different degrees of ordering in the same lithologies and metamorphic grade seems to be related to different organic precursors, as they are graphitised to different extents under the same metamorphic conditions. However, in the same lithologies and metamorphic grade, the existence of various stages of graphitisation within the same type of DOM can only be explained though the interaction of DOM with the metamorphic fluids present in the rocks. The ordering graphitisation process may be due to the existence of metamorphic fluid circulation events with a variety of compositions.  相似文献   
95.
The composition of ore minerals in MAR sulfide occurrences related to ultramafic rocks was studied using methods of mineragraphy, electron microscopy, microprobe analysis, and X-ray analysis. The objects are located at various levels of the maturity of sulfide mounds owing to differences in age, duration, and degree of activity of the following hydrothermal systems: generally inactive Logatchev-1 field (up to 66.5 ka old), inactive Logatchev-2 field (3.9 ka), and generally active Rainbow field (up to 23 ka). Relative to MAR submarine ore occurrences in the basalt substrate, mineralization in the hydrothermal fields mentioned above is characterized by high contents of Au, Cd, Co, and Ni, along with the presence of accessory minerals of Co and Ni. The studied mounds differ in quantitative ratios of major minerals and structural-textural features of ores that suggest their transformation. Ores in the Logatchev-1 field are characterized by the highest Cu content and the development of a wide range of multistage contrast exsolution structures of isocubanite and bornite. In the Logatchev-2 field, sphalerite-chalcopyrite and gold-arsenic exsolution structures are present, but isocubanite exsolution structures are less diverse and contrast. The Rainbow field is marked by the presence of homogenous isocubanite and the subordinate development of exsolution structures. We have identified four new phases in the Cu-Fe-S system. Phases X and Y (close to chalcopyrite and isocubanite, respectively) make up lamellae among isocubanite exsolution products in Logatchev-1 and Logatchev-2. Phase Y includes homogenous zones in zonal chimneys of the Rainbow field. Phases A and B are formed in the orange bornite domain at low-temperature alteration of chalcopyrite in the Logatchev-1 field. Mineral assemblages of the Cu-S system are most abundant and diverse in the Logatchev-1 field, but their development is minimal in the Logatchev-2 field where mainly Cu-poor sulfides of the geerite-covellite series have been identified. Specific features of mineral assemblages mentioned above reflect the maturity grade of sulfide mounds and can serve as indicators of maturity.__________Translated from Litologiya i Poleznye Iskopaemye, No. 4, 2005, pp. 339–367.Original Russian Text Copyright © 2005 by Mozgova, Borodaev, Gablina, Cherkashev, Stepanova.  相似文献   
96.
The enthalpies of formation from ilmenite, FeTiO3, and perovskite, CaTiO3, of two intermediate ordered perovskite phases, CaFeTi2O6 and CaFe3Ti4O12, have been measured at 801°C using oxide melt solution calorimetry. These data, in combination with experiments at high pressure and temperature, indicate that below 1518±50°C CaFe3Ti4O12 is stable at lower pressures (∼7 GPa at 1200°C) than CaFeTi2O6 (∼13 GPa at 1200°C). This relationship should be reversed, and CaFeTi2O6 should become stable at lower pressures than CaFe3Ti4O12, at temperatures above 1518±50°C. These intermediate phases are of petrological interest because they form as a reaction between two minerals, ilmenite and perovskite, which are commonly associated in kimberlites, and because their pressure-temperature range of formation overlaps that of origin of kimberlites. Received: 10 November 1997 / Revised; accepted: 15 January 1998  相似文献   
97.
At high pressures, CdGeO3 pyroxenoid transforms to garnet, then to ilmenite, and finally to perovskite. Enthalpies of transition among the four phases were measured by high temperature calorimetry. The entropies of transition and slopes of the boundaries were calculated using the measured enthalpies and free energies calculated from the phase equilibrium data. Pyroxenoid and garnet are very similar energetically. However garnet is a high pressure phase because of its lower entropy and smaller volume. The pyroxenoid-garnet transition has a small positiveP-T slope. Ilmenite is intermediate in enthalpy between garnet and perovskite, but is lower in entropy than both phases. Therefore the garnet-ilmenite transition has a positivedP/dT, while a negativedP/dT is calculated for the ilmenite-perovskite transition. The thermochemical data for the CdGeO3 phases are generally consistent with the observed high pressure phase relations. The high entropy of perovskite relative to ilmenite, observed in several ABO3 comounds including CdGeO3, is related to the structural features of perovskite, in which relatively small divalent cations occupy the large sites of 8–12 fold coordination. The thermochemistry of the CdGeO3 polymorphs shows several similarities to that of the CaGeO3 system.  相似文献   
98.
Enthalpies of solution in 2PbO · B2O3 at 974 K have been measured for glasses along the joins Ca2Si2O6 (Wo)-Mg2Si2O6 (En) and Mg2Si2O6-MgAl2SiO6 (MgTs). Heats of mixing are symmetric and negative for Wo-En with WH = ?31.0 ± 3.6 kJ mol?. Negative heats of mixing were also found for the En-MgTs glasses (WH = ?33.4 ± 3.7 kJ mol?).Enthalpies of vitrification of pyroxenes and pyroxenoids generally increase with decreasing alumina content and with decreasing basicity of the divalent cation.Heats of mixing along several glassy joins show systematic trends. When only non-tetrahedral cations mix (outside the aluminosilicate framework), small exothermic heats of mixing are seen. When both nontetrahedral and framework cations mix (on separate sublattices, presumably), the enthalpies of mixing are substantially more negative. Maximum enthalpy stabilization near compositions with Al/Si ≈ 1 is suggested.  相似文献   
99.
The enthalpies of drop solution of calcite, magnesite, dolomite, wollastonite and diopside have been measured in a lead borate solvent at 977 K in a Calvettype microcalorimeter. The carbonate calorimetry was done under flowing gas atmosphere. Both natural and synthetic samples were used. From these calorimetric data, the enthalpies of several reactions of carbonate with quartz were calculated. The enthalpies of these reactions (kJ/mol) at 298 K are: calcite+quartzwollastonite+CO2, 92.3±1.0; magnesite+quartzenstatite+CO2, 82.9±2.8; dolomite+quartzdiopside+CO2, 163.0±1.9. These values generally are in agreement with those calculated from Robie et al., Helgeson et al., Berman and Holland and Powell. The enthalpy of dolomite-quartz reaction overlaps marginally with those from Berman and Holland and Powell. The enthalpy of formation of dolomite from magnesite and calcite (-11.1±2.5 kJ/mol) was also derived from the measured enthalpies, and this value is consistent with that from acid solution calorimetric measurements as shown by Navrotsky and Capobianco, but different from values in the earlier literature. These results support the premise that drop-solution of carbonates into molten lead borate results in a well-defined final state consisting of dissolved oxide and evolved CO2. This was also confirmed by weight change experiments. Thus, oxide melt calorimetry is applicable to carbonates.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号