首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   16篇
  国内免费   22篇
测绘学   9篇
大气科学   18篇
地球物理   60篇
地质学   39篇
海洋学   9篇
天文学   24篇
综合类   4篇
自然地理   12篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   10篇
  2018年   19篇
  2017年   17篇
  2016年   10篇
  2015年   8篇
  2014年   8篇
  2013年   6篇
  2012年   9篇
  2011年   8篇
  2010年   17篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
91.
We consider a layered heterogeneous viscoelastic transversely isotropic medium with a vertical symmetry axis (a viscoelastic TIV medium) and parameters that depend on depth only. This takes into account intrinsic attenuation, anisotropy and thin layering. The seismic wavefield is decomposed into up- and downgoing waves scaled by the vertical energy flux. This scaling gives important symmetry relationships for both reflection and transmission (R/T) responses. For a stack of homogeneous layers, the exact reflection response can be computed in a numerically stable way by a simple layer-recursive algorithm. We derive exact plane-wave R/T coefficients and several linear and quadratic approximations between two viscoelastic TIV media, as functions of the real-valued horizontal slowness. The approximations are valid for pre- and post-critical values of horizontal slowness provided that the proper complex square roots are used when computing the vertical slowness. Numerical examples demonstrate that the quadratic approximations can be used for large differences in medium parameters, while the linear approximations can be used for small differences. For weak anisotropy it is sufficient to use an isotropic background medium, while for strong anisotropy it is necessary to use a weak TIV or TIV background medium. We also extend the O'Doherty–Anstey formula to the P- and SV-wave transmission responses of a stack of viscoelastic TIV layers, taking into account intrinsic attenuation, anisotropy and thin layering.  相似文献   
92.
Evolution of Multipath Error Reduction with Signal Processing   总被引:1,自引:0,他引:1  
GPS Solutions - The described method of code and carrier multipath error reduction is a refinement of the strobe method of pseudo random noise (PRN) signal processing. This method utilizes as a...  相似文献   
93.
Ray theory based upon real rays is presented for high frequencyP andS waves in continuously inhomogeneous isotropic linear media. Simple explicit formulae for the polarization anomalies described by higher order terms of the ray asymptotic expansions are considered.  相似文献   
94.
95.
The Morcles microgranite is located in the N–E termination of the Aiguilles Rouges massif (External Crystalline Massifs, Switzerland). It outcrops as dykes, a few meters to 150 m in thickness, intruding the Aiguilles Rouges polymetamorphic basement, and presents variation of texture from granophyric to rhyolitic. We present here for the first time, in situ U–Pb zircon dating of the Morcles microgranite/rhyolite based on laser-ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) data. Results indicate late Variscan emplacement ages at ~303 and ~309–312 Ma, a major Caledonian inherited component age at ~445–460 Ma, and secondary inherited ages ranging from Pan-African (550–1000 Ma) to Paleoproterozoic (2.3 Ga). Geochronological and geochemical data indicate that the Morcles microgranite/rhyolite shares a common origin with the higher (or “H”) facies of the neighbouring Vallorcine granitic intrusion. This close affinity is further corroborated by the geographical alignment of both intrusive bodies on either side of the Rhone Valley. The fine-grained texture of the microgranite groundmass and the rhyolite indicates a very rapid cooling rate and emplacement close to the surface, suggesting that the Morcles microgranite/rhyolite may constitute the shallow-level counterpart of the Vallorcine granite. The mineralogical assemblages observed in the Morcles microgranite/rhyolite support the idea of high-temperature melting conditions provided by underplating of mantle-derived magmas during the Carboniferous extension of the Variscan cordillera.  相似文献   
96.
97.
98.
Abstract

The prospects for expanding the mineral resource base in many countries are linked with the exploration of stranded sites localized at unexplored areas with complex natural and landscape conditions that make any ground survey, including magnetic prospecting, difficult and expensive. The current level of geology requires high-precision and large-scale data at the first stages of geological exploration. Since 2012, technologies of aeromagnetic surveying with unmanned aircraft vehicles (UAV) enter the market, but most of them are based on big fixed-wing UAV and do not allow to substantially increase the level of survey granularity compared with traditional aerial methods. To increase the scale of survey, it is necessary to reduce the altitude and speed of flight, for which the authors develop the methodical and technical solutions described in this article. To obtain data at altitudes of 5 m above the terrain even in a rugged relief, we created heavy multirotor UAVs that are stable in flight and may be used in a wide range of environmental conditions (even a moderate snowfall), and develop a special software to generate flight missions on the basis of digital elevation models. A UAV has special design to reduce magnetic interference of the flight platform; the magnetic sensor is hung below the aircraft. This technology was conducted in a considerable amount of magnetic surveys in the mountainous regions of East Siberia between 2014 and 2016. The results of the comparison between airborne and ground surveys are presented, which show that the sensitivity of the developed system in conjunction with low-altitude measurements can cover any geologically significant anomalies of the magnetic field. An unmanned survey is cheaper and more productive; the multirotor-based technologies may largely replace traditional ground magnetic exploration in scales of 1:10,000?1:1000.  相似文献   
99.
Compensation for geometrical spreading along the ray‐path is important in amplitude variation with offset analysis especially for not strongly attenuative media since it contributes to the seismic amplitude preservation. The P‐wave geometrical spreading factor is described by a non‐hyperbolic moveout approximation using the traveltime parameters that can be estimated from the velocity analysis. We extend the P‐wave relative geometrical spreading approximation from the rational form to the generalized non‐hyperbolic form in a transversely isotropic medium with a vertical symmetry axis. The acoustic approximation is used to reduce the number of parameters. The proposed generalized non‐hyperbolic approximation is developed with parameters defined by two rays: vertical and a reference rays. For numerical examples, we consider two choices for parameter selection by using two specific orientations for reference ray. We observe from the numerical tests that the proposed generalized non‐hyperbolic approximation gives more accurate results in both homogeneous and multi‐layered models than the rational counterpart.  相似文献   
100.
Acoustic transversely isotropic models are widely used in seismic exploration for P‐wave processing and analysis. In isotropic acoustic media only P‐wave can propagate, while in an acoustic transversely isotropic medium both P and S waves propagate. In this paper, we focus on kinematic properties of S‐wave in acoustic transversely isotropic media. We define new parameters better suited for S‐wave kinematics analysis. We also establish the travel time and relative geometrical spreading equations and analyse their properties. To illustrate the behaviour of the S‐wave in multi‐layered acoustic transversely isotropic media, we define the Dix‐type equations that are different from the ones widely used for the P‐wave propagation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号