首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   14篇
  国内免费   2篇
测绘学   7篇
大气科学   18篇
地球物理   33篇
地质学   89篇
海洋学   19篇
天文学   22篇
综合类   2篇
自然地理   14篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   9篇
  2019年   6篇
  2018年   10篇
  2017年   7篇
  2016年   8篇
  2015年   9篇
  2014年   10篇
  2013年   11篇
  2012年   6篇
  2011年   16篇
  2010年   12篇
  2009年   13篇
  2008年   15篇
  2007年   10篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1974年   4篇
排序方式: 共有204条查询结果,搜索用时 328 毫秒
61.
Summary ?The paper presents an experimental study on the effects of fluid content on the mechanical behaviour of natural fractures in chalk. The aims of the study are to provide better understanding of the mechanisms of chalk-fluid interaction, in general, and to explain the behaviour of petroleum chalk reservoirs during water injection, in particular. The experiments were carried out on L?gerdorf chalk using the direct shear apparatus. Two types of fluids were used in the tests: 1) water, and 2) synthetic oil. L?gerdorf chalk is a water-wet material which will develop capillary pressures upon contact with water. Initially saturating the chalk with oil will enhance the water wettability by inducing additional capillary forces between water and the non-wetting oil. In addition to the tests on fractured chalk samples, unconfined compression and direct shear tests on intact chalk samples were performed. The results showed significant differences in the strength and deformation characteristics of intact chalk initially saturated with different fluids. Intact water-saturated chalk showed lower deformation modulus (about 50%) and lower peak (also about 50%) and residual shear strength than the oil-saturated chalk. Water injection in initially oil-saturated fractures resulted in significant normal deformation under constant effective normal stress and shear stress relaxation under fixed shear displacement. The water-induced deformation occurred almost instantaneously after only a few cm3 of water had been injected into the fracture, and further injection of water did not increase the water-induced deformation. After water injection, fractures in initially oil-saturated chalk showed significantly lower normal and shear stiffnesses and lower shear strength. The weakening in shear is attributed partly to the reduction in the basic friction angle, φb, and this reduction was verified in a series of tilt tests to measure the frictional resistance between smooth edges of core samples of chalk. The reduction in the basic friction angle implies that the interaction of chalk with water is governed not only by capillary forces, as postulated in several previous studies, but also by chemical and/or physio-chemical effects.  相似文献   
62.
The seasonally‐dry climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. Frequently during summer, the only water inputs occur as non‐rainfall water, in the form of fog and dew. However, due to spatially heterogeneous fog interaction within a watershed, estimating fog water fluxes to understand watershed‐scale hydrologic effects remains challenging. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems, in a San Francisco Peninsula watershed. To monitor fog occurrence, intensity, and spatial extent, we focused on the mechanisms through which fog can affect the water balance: throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables. A stratified sampling design was used to capture the watershed's spatial heterogeneities in relation to fog events. We developed a novel spatial averaging scheme to upscale local observations of throughfall inputs and evapotranspiration suppression and make watershed‐scale estimates of fog water fluxes. Inputs from fog water throughfall (10–30 mm/year) and fog suppression of evapotranspiration (125 mm/year) reduced dry‐season water deficits by 25% at watershed scales. Evapotranspiration suppression was much more important for this reduction in water deficit than were direct inputs of fog water. The new upscaling scheme was analyzed to explore the sensitivity of its results to the methodology (data type and interpolation method) employed. This evaluation suggests that our combination of sensors and remote sensing allows an improved incorporation of spatially‐averaged fog fluxes into the water balance than traditional interpolation approaches.  相似文献   
63.
64.
Transgressive dune fields often comprise a multiplicity of landforms where vegetation processes largely affect landform dynamics, which in turn, also affect vegetation processes. These associations have seldom been studied in detail. This paper examines four separate landform types in a complex coastal transgressive dunefield located in the central Gulf of Mexico, in order to assess the relationships between dunefield habitat, local environmental factors, vegetation associations and landform evolution. Topographic surveys using tape and clinometer were conducted in conjunction with vegetation survey transects at four locations across the Doña Juana dunefield. Vegetation surveys allowed the estimation of relative plant cover of each plant species found along the transects. A large variety of landforms were found at the Doña Juana Dunefield: deflation plains, gegenwalle (counter) ridges, transverse dune trailing ridges, blowouts and parabolic dunes, aklé (fish‐scale shaped) dunefields and precipitation ridges, with plant species associations developing on these different landforms equally variable. Flood tolerant species were located in the lower parts (deflation plain and gegenwalle ridges) whereas the older and dryer parts were covered by coastal matorral shrubs. Burial‐tolerant species were dominant in the most mobile areas (blowouts and aklé dunefield and margin). The dune trailing ridge, with relatively milder conditions, showed the highest richness, with no dominant species. A dual interaction was found such that colonizing species both create and affect topography, and in turn, topography determines vegetation association and succession patterns. In coastal dunes, the vegetation and abiotic environment (namely the different landforms and the inherent micronevironmental variability) interact tightly and generate a complex and highly dynamic biogeomorphic system where substrate mobility and colonization processes reinforce one another in positive feedback. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
65.
The Tucumán foreland basin is bounded by: 1) basement cored ranges with elevations over 6000 m in the west; 2) inverted extensional grabens to the north; 3) basement thrust blocks in the south and 4) basement cored small ranges in the east. This foreland basin is located between two geological provinces: the Sierras Pampeanas and the Santa Bárbara system.Cretaceous Salta rifting extended southwards covering the entire eastern part of the province of Tucumán in NW Argentina. Syn-rift and post-rift deposits can be recognized in accordance with their architectural geometries. Foreland basin sediments progressively covered the rift deposits as the Andean orogen propagated towards the east.Despite some early studies, the Tucumán basin is poorly documented. For the present study, 44 sections of 2D seismic surveys amounting to more than 730 km were used to describe the structure and the depositional evolution of the basin. The present structure is the result of a long sequence of events that includes a compressional deformation during the Paleozoic, a rifting stage during the Cretaceous and a foreland stage during the late Cenozoic. Although tectonic inversion, which has played a role during the foreland stage since the Miocene, can be observed in many sectors of the basin, it is more prominent along the margins. Reactivation of old basement discontinuities and inversion of Cretaceous normal faults produced the compartmentalization of the foreland, giving rise to the present shape of the Tucumán basin. This evolution is recorded in the Neogene deposits.  相似文献   
66.
The authors are studying microbial sulfur redox metabolisms in a glacial environment. The energy available from sulfur redox reactions at this site has been calculated using geochemical data obtained from the site. DNA has been extracted from the same site and is being analyzed for the presence and relative quantities of sulfur redox genes, to determine whether bioenergetic calculations can predict the sulfur redox reactions that microbes are in fact utilizing.  相似文献   
67.
Yu  Qiwei  Lau  Alexis K. H.  Tsang  Kang T.  Fung  Jimmy C. H. 《Natural Hazards》2018,92(2):1011-1038
Natural Hazards - The adverse impact of climate change-associated extreme weather events is becoming more significant globally, particularly the flood impact on coastal and low-lying areas such as...  相似文献   
68.
In recent years, open and data-driven science has fostered very important scientific breakthroughs. This study describes the challenges and opportunities for the scientific community devoted to bed form dynamics research in adopting such scientific paradigms through, for example, engineered data sharing, formal recognition of scientists who collect the data, and collaborative development of free accessible software. It highlights that once these actions are completed, the potential application of deep learning techniques could substantially improve bed form models and the scientific understanding of bed form dynamics. Likewise, it discusses the potential of Bedforms-ATM, a free available software, to standardize some bed form data analysis techniques. We propose that the technical challenges be tackled by following scholarly accepted/proposed standards (e.g. FAIR Guiding Principles, Geoscience Papers of the Future), using the body of knowledge being built on the matter by some institutions (e.g. Federation of Earth Science Information Partners), and through technical discussions at scientific meetings such as MARID. © 2020 John Wiley & Sons, Ltd.  相似文献   
69.
CO2 injection into deep saline formations as a way to mitigate climate change raises concerns that leakage of saline waters from the injection formations will impact water quality of overlying aquifers, especially underground sources of drinking water (USDWs). This paper aims to characterize the geochemical composition of deep brines, with a focus on constituents that pose a human health risk and are regulated by the U.S. Environmental Protection Agency (USEPA). A statistical analysis of the NATCARB brine database, combined with simple mixing model calculations, show total dissolved solids and concentrations of chloride, boron, arsenic, sulfate, nitrate, iron and manganese may exceed plant tolerance or regulatory levels. Twelve agricultural crops evaluated for decreased productivity in the event of brine leakage would experience some yield reduction due to increased TDS at brine‐USDW ratios of < 0.1, and a 50% yield reduction at < 0.2 brine‐USDW ratio. A brine‐USDW ratio as low as 0.004 may result in yield reduction in the most sensitive crops. The USEPA TDS secondary standard is exceeded at a brine fraction of approximately 0.002. To our knowledge, this is the first study to consider agricultural impacts of brine leakage, even though agricultural withdrawals of groundwater in the United States are almost three times higher than public and domestic withdrawals.  相似文献   
70.
We provide new insights into the prograde evolution of HP/LT metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg = 0.27–0.73) and chloritoid (overall X Mg = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve PT conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The PT paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号