首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1695篇
  免费   117篇
  国内免费   82篇
测绘学   91篇
大气科学   99篇
地球物理   455篇
地质学   882篇
海洋学   81篇
天文学   129篇
综合类   27篇
自然地理   130篇
  2024年   3篇
  2023年   13篇
  2022年   56篇
  2021年   57篇
  2020年   67篇
  2019年   79篇
  2018年   150篇
  2017年   130篇
  2016年   177篇
  2015年   82篇
  2014年   182篇
  2013年   174篇
  2012年   92篇
  2011年   104篇
  2010年   61篇
  2009年   73篇
  2008年   58篇
  2007年   40篇
  2006年   54篇
  2005年   32篇
  2004年   24篇
  2003年   25篇
  2002年   23篇
  2001年   18篇
  2000年   15篇
  1999年   6篇
  1998年   13篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   7篇
  1993年   7篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有1894条查询结果,搜索用时 390 毫秒
151.
Reservoir simulation role in value creation and strategic management decisions cannot be over emphasized. Simulation of complex challenging reservoirs with millions of grid blocks especially in compositional mode is very time-consuming even with fast modern computers. On the other hand, high price of cluster supercomputers prevents them for being commonly used for fast simulation of such reservoirs. In recent years, the development of many-core processors like cell processors, DSPs, and graphical processing units (GPUs) has provided a very cost-effective hardware platform for fast computational operations. However, programming for such processors is much more difficult than conventional CPUs, and new parallel algorithm design and special parallel implementation methods are needed. Using the computational power of CPUs, GPUs, and/or any other processing unit, Open Computing Language (OpenCL) provides a framework for programming for heterogeneous platforms. In this paper, OpenCL is used to employ the computational power of a GPU to build a preconditioner and solve the linear system arising from compositional formulation of multiphase flow in porous media. The proposed parallel preconditioner is proved to be quite effective, even in heterogeneous porous media. Using data-parallel modules on GPU, the preconditioner/solver runtime reduced at least 1 order of magnitude compared to their serial implementation on CPU.  相似文献   
152.
The present article explores the ability of five different combinations of two adsorbents (Arachis hypogea shell powder and Eucalyptus cameldulensis saw dust) to remove Pb(II) from synthetic and lead acid batteries wastewater through batch and column mode. The effects of solution pH, adsorbent dose, initial Pb(II) concentration and contact time were investigated with synthetic solutions in batch mode. The Fourier transform infrared spectroscopy study revealed that carboxyl and hydroxyl functional groups were mostly responsible for the removal of Pb(II) ions from test solutions. The kinetic data were found to follow pseudo-second-order model with correlation coefficient of 0.99. Among Freundlich and Langmuir adsorption models, the Langmuir model provided the best fit to the equilibrium data with maximum adsorption capacity of 270.2 mg g?1. Column studies were carried out using lead battery wastewater at different flow rates and bed depths. Two kinetic models, viz. Thomas and Bed depth service time model, were applied to predict the breakthrough curves and breakthrough service time. The Pb(II) uptake capacity (q e = 540.41 mg g?1) was obtained using bed depth of 35 cm and a flow rate of 1.0 mL min?1 at 6.0 pH. The results from this study showed that adsorption capacity of agricultural residues in different combinations is much better than reported by other authors, authenticating that the prepared biosorbents have potential in remediation of Pb-contaminated waters.  相似文献   
153.
The use of slickline distributed temperature sensing (SL-DTS) technology is becoming widespread due to its ease of operation and ability to acquire real-time multiple temperature traces inside the wellbore. Injection of treated acid gas (TAG)—a mixture of CO2 and H2S—into geologic formations has become an attractive technical and economic option for oil and gas producers and processors who are faced with regulations concerning excess sulfur and greenhouse gas emissions. Acid gas injection (AGI) into geologic formations is more economical and more flexible in dealing with varying TAG compositions than sulfur recovery units (SRUs) using the Claus process. SRUs do not achieve air quality standards and have high operation and maintenance costs. In addition, there is low demand for sulfur and sulfur disposal costs are high. The results of the analysis of SL-DTS data acquired in conjunction with step rate and pressure falloff (PFO) tests are presented in this paper. These tests were conducted to evaluate the injection potential of geologic formations. The injection zone consisted of a carbonate formation characterized by Karst features, vugs, and natural fractures. The SL-DTS data during the initial injection flow rate for the step rate test (SRT) indicated that high permeability zones accepted fluid at lower injection rates. An increasing number of discrete zones began to accept fluid as the injection rate was increased. The results of the SRT provided the fracture pressure of the formation. This information was used to design an AGI program that would avoid fracturing the formation while allowing for the required volume of TAG to be injected. The results of the PFO test provided information on the reservoir pressure and permeability and also indicated the presence of one or more hydraulic fractures. This case study of SL-DTS measurements made during a SRT and a PFO test for the design of an AGI well provides valuable insights into the potential of DTS technology and its use in AGI and carbon capture/sequestration (CCS) operations. Its findings could be applied to analyze injection potential of geological formations not only for AGI projects but also for CCS, and CO2 enhanced oil recovery opportunities.  相似文献   
154.
The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO4 and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO4 and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caexcess versus Mgdeficit, is proposed to evaluate the dolomitization process.  相似文献   
155.
Sediment samples collected from the West Port, the west coastal waters of Malaysia, were analyzed by standard methods to determine the degree of hydrocarbon contamination and identify the sources of polyaromatic hydrocarbons (PAHs). Concentrations of PAHs in the port sediments ranged from 100.3 to 3,446.9 μg/kg dw. The highest concentrations were observed in stations close to the coastline, locations affected by intensive shipping activities and industrial input. These were dominated by high-molecular-weight PAHs (4–6 rings). Source identification showed that PAHs originated mostly pyrogenically, from the combustion of fossil fuels, grass, wood, and coal or from petroleum combustion. Regarding ecological risk estimation, only station 7 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the West Port.  相似文献   
156.
In this paper, a new methodology is developed for optimization of water and waste load allocation in reservoir–river systems considering the existing uncertainties in reservoir inflow, waste loads and water demands. A stochastic dynamic programming (SDP) model is used to optimize reservoir operation considering the inflow uncertainty, and another model called PSO-SA is developed and linked with the SDP model for optimizing water and waste load allocation in downstream river. In the PSO-SA model, a particle swarm optimization technique with a dynamic penalty function for handling the constraints is used to optimize water and waste load allocation policies. Also, a simulated annealing technique is utilized for determining the upper and lower bounds of constraints and objective function considering the existing uncertainties. As the proposed water and waste load allocation model has a considerable run-time, some powerful soft computing techniques, namely, Regression tree Induction (named M5P), fuzzy K-nearest neighbor, Bayesian network, support vector regression and an adaptive neuro-fuzzy inference system, are trained and validated using the results of the proposed methodology to develop real-time water and waste load allocation rules. To examine the efficiency and applicability of the methodology, it is applied to the Dez reservoir–river system in the south-western part of Iran.  相似文献   
157.
Nitrate contamination in irrigation groundwater,Isfahan, Iran   总被引:1,自引:1,他引:0  
Groundwater is one of the major sources of water in Isfahan. Efficient management of these resources requires a good understanding of its status. This paper focuses on the hydrochemistry and also it wants to assess the nitrate concentration in irrigation groundwater of Isfahan suburb. All the groundwater samples are grouped into three categories, including Na-Cl + Ca-Cl (63 %), Na-SO4 + Ca-SO4 (23 %) and Ca-HCO3 (14 %). According to the EC and SAR, the most dominant classes are C3S1, C4S2 and C4S3. 55 % of samples indicate very high salinity and medium to very high alkalinity that is not suitable for irrigation. 84 % of the groundwater samples show nitrate contents higher than HAV (13 mg l?), while more than 25 % exceeded the maximum contamination level (44.27 mg l?) according to EPA regulations. The horizontal and vertical distribution patterns of nitrate in groundwater samples show a surficial origin for nitrate contamination. The high nitrate content can be attributed to the agricultural activities along with domestic sewage and industrial wastewaters in populated area. Based on results, using high nitrate groundwater for irrigation can minimize the requirement for inorganic fertilizers and reduce the cost of cultivation and nitrate contamination.  相似文献   
158.
The present contribution is a complete study extending before, during, and after the excavation of the mountain side that lying north of road 7. It includes slope stability analysis, rock cut design, and rockfall modeling for natural slope and rock cut face. Neoproterozoic granodiorite and biotite granite forming the slope body have medium to very high strengths. Mineral compositions and textures of these intact rocks control the strength values. These rocks are intensively dissected by fractures that are filled with montmorillonite and chlorite. The high plasticity and slippery nature of these filling materials represent the main problem that may face a rock cut designer because they damage the mechanical properties of these fractures. The problem begins with the selection of the rock mass classification that deals with the fracture fillings and extends during the stability analysis and the suggestion of mitigation and supporting measures. The rock masses building the natural slope are suffered by plane, wedge, and toppling failures. Therefore, two rock cut designs are suggested to avoid the hazards related to these failures and considering the construction cost as well. Rockfall modeling for the natural slope and rock cut designs was done to assess the hazards related to these falling of the blocks. The kinetic energy of falling blocks is represented on the roadway by the coverage distance and block rebound amplitude. Slope height has a positive effect on the values of these distance and amplitude, whereas the steepness of berm height has a negative effect on them. Coverage distance is a function to the location of rockfall barrier and to the width of road ditch, while the amplitude controls the barrier height.  相似文献   
159.
In this study, the relationship between the hourly changes of the ionospheric critic frequency values of F2 layers in low latitudes and geomagnetic activity is examined by using statistical methods. The ionospheric critical frequency data has been taken from the Manila (121.1° E, 14.7° N) ionosonde station. In order to investigate the effect of sun activity on ionospheric critical frequency, the data of 1981 when the sun was active and of 1985 when the sun was less active has been used. According to the Granger causality test results, on 5 % significance level, a causality relationship from disturbance storm time (Dst) index values to ionospheric critical frequency values direction has been observed. However, a causality relationship from ionospheric critical frequency values to Dst values has not been observed. From the results of cause-and-effect analysis, it is evaluated that the effect of a shockwave occurring in geomagnetic activity on ionospheric critical frequency continues along 72 h, that is, geomagnetic activity has a long-term effect on ionospheric critical frequency. The response of ionospheric critical frequency to geomagnetic activity substantially depends on seasons. This response is more observed especially in equinox period when the sun is active and in winter months. The increase in geomagnetic activity causes ionospheric critical frequency to decrease in night hours and increase in day hours. The same relationship has not been observed exactly, though observed very little in winter months, for 1985 when the sun was less active.  相似文献   
160.
Underground structures are currently widely used and are built as urbanism develops. The interactions between perpendicularly crossing and parallel tunnels in the Tehran region are investigated by using a full three-dimensional (3D) finite difference analysis with elastic-plastic material models. Special attention is paid to the effect of subsequent tunneling on the support system, i.e., the shotcrete lining and rock bolts of the existing tunnel. Eventually, as the tunnels are excavated at certain levels, the interaction between the tunnels will certainly have a significant influence on both stress distribution and consequently deformations. Since multilayer tunneling is a three-dimensional phenomenon in nature, 3D numerical solutions must be utilized for analyzing effect of perpendicularly crossing tunnels at various levels. As Tohid twin tunnels and Line 7 pass beneath the Line 4 metro tunnel, changes in stress distribution, deformations, and surface settlements are studied for various conditions and the results are presented in this paper. Consequently, it is shown that there is a significant interaction between tunnels that necessitate certain preventive measures to maintain a stable tunneling operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号