首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   9篇
大气科学   3篇
地球物理   31篇
地质学   41篇
海洋学   25篇
天文学   5篇
综合类   1篇
自然地理   2篇
  2021年   14篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   10篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   4篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1993年   1篇
  1980年   2篇
排序方式: 共有108条查询结果,搜索用时 250 毫秒
61.
62.
Kwon  Young-Oh  Camacho  Alicia  Martinez  Carlos  Seo  Hyodae 《Climate Dynamics》2018,51(9-10):3275-3289
Climate Dynamics - The atmospheric jet and blocking distributions, especially in the North Atlantic sector, have been challenging features for a climate model to realistically reproduce. This study...  相似文献   
63.
We carried out a geologic survey and a preliminary archaeological survey of four fossil‐spring tufa localities in Kharga Oasis, Egypt, to constrain the timing of pluvial episodes in the Western Desert, and to document prehistoric occupation contemporaneous with times of increased rainfall. Uranium‐series dating of the tufas confirms that at least five episodes of tufa deposition are represented in Kharga, although not every event is represented at each locality. Across the region studied, tufas were most frequently deposited as part of a fluvial barrage system, characterized by terraced, vegetated pools impounded by arcuate tufa dams and separated by small waterfalls. Available water resources during pluvial phases would have included not only spring‐fed streams but also small freshwater lakes. While Earlier Stone Age (ESA) and Middle Stone Age (MSA) lithic artifacts may be found either as surficial lags on tufas, or, less commonly, encased within tufas, Epipalaeolithic and Neolithic artifacts are generally found in or on silts within surface deflation depressions in the tufas, principally at Wadi Midauwara. © 2004 Wiley Periodicals, Inc.  相似文献   
64.
Porosity, or void space, of large wood jams in stream systems has implications for estimating wood volumes and carbon storage, the impacts of jams on geomorphic and ecological processes, and instream habitat. Estimating porosity and jam dimensions (i.e. jam volume) in the field is a common method of measuring wood volume in jams. However, very few studies explicitly address the porosity values in jams, how porosity is calculated and assessed for accuracy, and the effect such estimates have on carbon and wood budgets in river corridors. We compare methods to estimate jam porosity and wood volume using field data from four different depositional environments in North America (jam types include small in-channel jams, large channel-margin jams, a large island apex jam, and a large coastal jam), and compare the results with previous studies. We find that visual estimates remain the most time-efficient method for porosity estimation in the field, although they appear to underpredict back-calculated porosity values; the accuracy of jam porosity, and thus wood volume, estimates are difficult to definitively measure. We also find that porosity appears to be scale invariant, dictated mostly by jam type, (which is influenced by depositional processes), rather than the size of the jam. Wood piece sorting and structural organization are likely the most influential properties on jam porosity, and these factors vary according to depositional environment. We provide a framework and conceptual model that uses these factors to demonstrate how modeled jam porosity values differ and give recommendations as a catalyst for future work on porosity of wood jams. We conclude that jam type and size and/or the study goals may dictate which porosity method is the most appropriate, and we call for greater transparency and reporting of porosity methods in future studies. © 2020 John Wiley & Sons, Ltd.  相似文献   
65.
66.
Headwaters are generally assumed to contribute the majority of water to downstream users, but how much water, of what quality and where it is generated are rarely known in the humid tropics. Here, using monthly monitoring in the data scarce (2,370 km2) San Carlos catchment in northeastern Costa Rica, we determined runoff-area relationships linked to geochemical and isotope tracers. We established 46 monitoring sites covering the full range of climatic, land use and geological gradients in the catchment. Regression and cluster analysis revealed unique spatial patterns and hydrologically functional landscape units. These units were used for seasonal and annual Bayesian tracer mixing models to assess spatial water source contributions to the outlet. Generally, the Bayesian mixing analysis showed that the chemical and isotopic imprint at the outlet is throughout the year dominated by the adjacent lowland catchments (68%) with much less tracer influence from the headwaters. However, the headwater catchments contributed the bulk of water and tracers to the outlet during the dry season (>50%) despite covering less than half of the total catchment area. Additionally, flow volumes seemed to be linearly scaled by area maintaining a link between the headwaters and the outlet particularly during high flows of the rainy season. Stable isotopes indicated mean recharge elevations above the mean catchment altitude, which further supports that headwaters were the primary source of downstream water. Our spatially detailed “snap-shot” sampling enabled a viable alternative source of large-scale hydrological process knowledge in the humid tropics with limited data availability.  相似文献   
67.
We report the ratio of the initial carbon available as CO that forms gas‐phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface‐mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume “filamentous” structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain–grain sticking during low‐velocity collisions.  相似文献   
68.
This study reports novel findings on the Pliocene?CQuaternary history of the northern Gulf of Cadiz margin and the spatiotemporal evolution of the associated contourite depositional system. Four major seismic units (P1, P2, QI and QII) were identified in the Pliocene?CQuaternary sedimentary record based on multichannel seismic profiles. These are bounded by five major discontinuities which, from older to younger, are the M (Messinian), LPR (lower Pliocene revolution), BQD (base Quaternary discontinuity), MPR (mid-Pleistocene revolution) and the actual seafloor. Unit P1 represents pre-contourite hemipelagic/pelagic deposition along the northern Gulf of Cadiz margin. Unit P2 reflects a significant change in margin sedimentation when contourite deposition started after the Early Pliocene. Mounded elongated and separated drifts were generated during unit QI deposition, accompanied by a general upslope progradation of drifts and the migration of main depocentres towards the north and northwest during both the Pliocene and Quaternary. This progradation became particularly marked during QII deposition after the mid-Pleistocene (MPR). Based on the spatial distribution of the main contourite depocentres and their thickness, three structural zones have been identified: (1) an eastern zone, where NE?CSW diapiric ridges have controlled the development of two internal sedimentary basins; (2) a central zone, which shows important direct control by the Guadalquivir Bank in the south and an E?CW Miocene palaeorelief structure in the north, both of which have significantly conditioned the basin-infill geometry; and (3) a western zone, affected in the north by the Miocene palaeorelief which favours deposition in the southern part of the basin. Pliocene tectonic activity has been an important factor in controlling slope morphology and, hence, influencing Mediterranean Outflow Water pathways. Since the mid-Pleistocene (MPR), the sedimentary stacking pattern of contourite drifts has been less affected by tectonics and more directly by climatic and sea-level changes.  相似文献   
69.
Biomass and primary productivity of picophytoplankton (PP; phytoplankton <3 μm) and larger phytoplankton (>3 μm) were determined during an annual cycle along the salinity gradient in North Carolina’s Neuse River Estuary (NRE), a eutrophic, microtidal estuary. The PP were a major component of total phytoplankton biomass and productivity, contributing ∼35–44% of the total chlorophyll a (Chl a) and 42–55% of the total primary productivity. Chl a and productivity of PP decreased from the upper to lower estuary, although the PP contribution relative to larger phytoplankton remained nearly constant. Significant PP growth occurred in the spring, but PP productivity and biomass were maximal in summer. PP productivity and biomass were positively correlated with temperature and dissolved inorganic phosphorus concentrations, which were maximal in summer due to release from sediments. Biomass and productivity of PP and >3 μm phytoplankton were also positively correlated, suggesting that growth conditions favoring the onset of blooms of larger phytoplankton species will similarly affect PP. High PP productivity and biomass in the NRE support the notion that PP play an important role in the production and eutrophication potentials of this estuary. High PP productivity and biomass have been noted in several other temperate estuaries, all sharing a common feature with the NRE—long residence time. These findings challenge the assumption that PP relative importance should be minimal in eutrophic systems.  相似文献   
70.
Decision making regarding massive evacuation of a population threatened by a probable volcanic eruption is a major problem in crisis management. Such a decision is general on the number of people to be evacuated, available resources and infrastructure, quantity and quality of the escape routes and shelters, and the economic, social and political costs involved in the operation, coupled with the updated information provided by scientists about the forecast of future activity and probable eruption scenarios. Knowing time-lapse between the evacuation decision-making time and the time in which the evacuation is completed is another critical issue that must be carefully considered in densely populated areas. In such areas, it is really important to estimate in advance this time-lapse, as the forecast must be released with enough time to complete all the evacuation process before the destructive manifestations of the eruption begin. In this context, evacuation planning is a crucial component of emergency management. It is common for Emergency Plans to include pre-established strategies. However, an evacuation procedure should be flexible, depending on the above-mentioned timing, and on the decisions, evacuation schemes, environmental characteristics and other factors. In this work, several hazard models such as a lava flow model based on a Monte Carlo algorithm, a pyroclastic density current based on energy cone model, a semi-empirical inversion model to estimate the thickness of ash deposits, and all available information about the El Chión volcano have been used to obtain the area that should be evacuated in case of an eruption. Then, multiple evacuation strategies at El Chichón volcano have been designed, considering not only the characteristics of the eruption forecast, but also environmental factors (e.g., weather conditions) and social factors (e.g., tourism and farming seasons). The variable scale evacuation model has been used to estimate the evacuation time. In the paper, those virtual tools are briefly described as well as the information obtained from the drill of 2009. In addition to the optimization of evacuation under variable conditions and situations, one of the main objectives of this work is to provide a reliable estimation of the mitigation action time, for an Emergency Plan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号