首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   7篇
测绘学   6篇
地球物理   25篇
地质学   50篇
海洋学   18篇
天文学   12篇
自然地理   21篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2017年   6篇
  2016年   2篇
  2015年   2篇
  2013年   11篇
  2012年   6篇
  2011年   7篇
  2010年   13篇
  2009年   8篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1986年   3篇
  1984年   1篇
  1983年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1963年   1篇
  1960年   1篇
排序方式: 共有132条查询结果,搜索用时 854 毫秒
101.
102.
103.
The Barwon Downs Graben lies on the northern flanks of the Otway Ranges and is situated approximately 70 km southwest of Geelong, Victoria, Australia. The major lower Tertiary Barwon Downs Graben aquifer comprises highly permeable sands and gravels interbedded with clays and silts of the hydraulically interconnected Pebble Point, Dilwyn and Mepunga Formations. Groundwater flows east into the Barwon Downs Graben from the Barongarook High, and yields 14C ages up to ~20 ka implying that recharge rates are low and, consequently, that the resource could be impacted by overabstraction. The presence of three different lithological units has led to the development of localized flow systems that has resulted in a lack of regular spatial variations in groundwater chemistry. Stable isotopic data suggests that groundwater was recharged under similar climatic conditions as of today. The major ion chemistry of the freshest groundwater is dominated by Na and HCO3 while higher TDS groundwater, from the confining Narrawaturk Marl, is dominated by Na and Cl. Cl/Br ratios are close to rainfall suggesting that halite dissolution is not the principle source of salts. An excess of Na relative to Cl in fresher groundwater suggests that feldspar dissolution has occurred, however, water–rock interaction is limited. The concentrations of Ca, Mg, and SO4 are controlled by silicate dissolution and ion-exchange reactions with clays.  相似文献   
104.
105.
The south-east Reynolds Range, central Australia, is cut by steep north-west-trending Alice Springs age ( c. 334  Ma) shear zones that are up to hundreds of metres wide and several kilometres long with reverse senses of movement. Amphibolite facies (550–600  °C, 500–600  MPa) shear zones cut metapelites, while greenschist facies shear zones (420–535  °C, 400–650  MPa) cut metagranites. The sheared rocks commonly underwent metasomatism implying that the shear zones were the pathways of significant fluid flow. Altered granites within greenschist facies shear zones have gained Si and K but lost Ca and Na relative to their unsheared counterparts, suggesting that the fluid flowed down-temperature (and hence probably upward) through the shear zones. Time-integrated fluid fluxes calculated from silica addition are up to 2.1×1010 mol  m−2 ( c. 4.2×105  m3  m−2). Similar time-integrated fluid fluxes are also estimated from changes in K and Na. The sheared granitic rocks locally have δ18O values as low as 0 which is much lower than the δ18O values of the adjacent unsheared granites (7 to 9), implying that the fluid which flowed through these shear zones was derived from the surface. For the estimated time-integrated fluid fluxes, the fluids would be able to retain their isotopic signature for many tens to hundreds of kilometres. The flow of surface-derived fluids into the ductile middle crust, with subsequent expulsion upwards through the shear zones, may have been driven by seismic activity accompanying the Alice Springs deformation.  相似文献   
106.
Unlike rivers in humid regions, dryland rivers typically exhibit reduced flow in the downstream direction as a result of transmission losses, which include seepage of streamflow into the aquifer, evaporation, and transpiration. However, much remains to be learned about the nature of the exchange between surface water and groundwater in these landscapes, especially in terms of spatial and temporal variability. Our study focused on streambank seepage and groundwater flow in the alluvial aquifer, specifically on answering questions such as: Is there seasonal variability in seepage losses? Is seepage permanently lost? Can losses be reduced by killing riparian vegetation? To better understand the magnitude, variability, and fate of streambank seepage, we assessed river stages, groundwater hydraulic gradients, and groundwater flow paths at two sites along a reach of the Pecos River, a dryland perennial river in West Texas. We found that along this reach the river was losing water to the aquifer even under low‐flow conditions; but seepage was controlled by a number of different mechanisms. Seepage increased not only during high‐flow events but also when the groundwater level was declining owing to long periods of no irrigation release. Tamarix (saltcedar) control did not affect hydraulic gradients nor reduce streambank seepage and given that this reach of the Pecos River is a losing one, streamflow will not be enhanced by controlling saltcedar. These findings can be used to improve basic conceptual models of dryland river systems and to predict hydrologic responses to changes in the timing and magnitude of streamflows and to riparian vegetation management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
107.
Understanding the behaviour and variability of environmental tracers is important for their use in estimating groundwater discharge to rivers. This study utilizes a multi‐tracer approach to quantify groundwater discharge into a 27 km upland reach of the Gellibrand River in southwest Victoria, Australia. Ten sampling campaigns were conducted between March 2011 and June 2012, and the distribution of 222Rn activities, Cl and 3H concentrations imply the river receives substantial groundwater inflows. Mass balances based on 222Rn, Cl and 3H yield estimates of groundwater inflows that agree to within ± 12%, with cumulative inflows in individual campaigns ranging from 24 346 to 88 467 m3/day along the studied river section. Groundwater discharge accounts for between 10 and 50% of river flow dependent on the time of year, with a high proportion (>40 %) of groundwater sustaining summer flows. Groundwater inflow is largely governed by regional groundwater flowpaths; between 50 and 90% of total groundwater inflows occur along a narrow 5–10 km section where the river intersects the Eastern View Formation, a major regional aquifer. Groundwater 222Rn activities over the 16 month period were spatially heterogeneous across the catchment, ranging between 2000 Bq/m3 and 16 175 Bq/m3. Although groundwater 222Rn activities display temporal variation, spatial variation in groundwater 222Rn is a key control on 222Rn mass balances in river catchments where groundwater and river 222Rn activities are within an order of magnitude of each other. Calculated groundwater discharges vary from 8.4 to 15 m3/m/day when groundwater 222Rn activities are varied by ± 1 σ. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
108.
Polygonal fault systems (PFS) are widely developed along many continental margin basins and some interior cratonic and foreland basins. They are networks of small normal faults that are usually found in tiers which are crudely layer-bound successions consisting mainly of fine-grained sediments. Their origin has been widely debated with explanations ranging from dewatering of overpressured layers to gravitational loading under fixed lateral boundary conditions. Their distribution in fine-grained intervals suggests that their genesis is connected to their initial lithology. Recent experimental work suggests that diagenesis of clay-rich sediments can lead to shear failure under low confining stresses. This explanation accords well with all subsurface observations of PFS made to date, and seems the most likely mechanism to explain their genesis. This diagenetic mode of shear fracturing in fine-grained sediments could be much more prevalent than in polygonal fault systems alone, and this has significant implications for shale gas exploration, CO2 sequestration and exploration for methane hydrates.  相似文献   
109.
Unaltered metasediments of the Mary Kathleen Fold Belt are composed predominantly of layered amphibolite-facies scapolitic calc-silicate rocks in which minimal infiltration of externally derived fluids occurred during regional metamorphism. There were substantial differences in volatile activities between different layers in the layered sequences, in particular: a CO2/a H 2 O inferred from reaction progress estimates and analysis of biotite-clinopyroxene-fluid phase relations; a NaCl/a H 2 O inferred from scapolite compositions; and a HCl/a H 2 O inferred from biotite compositions. In one outcrop in which a clinopyroxene-producing reaction dominated, differences in approximate X CO 2of up to 0.25 occurred between several samples collected over 50 metres. Variations in a H 2 O/a HCl of up to one order of magnitude are inferred at 1 to 50 m scales from biotite-Cl contents, and variations in NaCl contents of scapolite from 0.0 to up to 0.6 Cl atoms in the Cl–CO3–SO4 site reflect a large variation of a NaCl in the coexisting fluid at similar scales. Most calcsilicate layers internally buffered fluid compositions in the H2O–CO2–NaCl–HCl system. Local occurrences of NaCl-rich scapolite suggest that some layers may have been in equilibrium with halite during early prograde metamorphism. At peak metamorphic temperatures, disolution of halite was complete but layers containing high-NaCl scapolite continued to buffer fluid at high values of a NaCl. Fluid immiscibility does not appear to have affected the progress of the devolatilization reactions. Although fluid was predominantly internally buffered, moderate quantities of fluid were released by prograde mineral reactions in many layers, up to 30 cm3 fluid per 100 cm3 rock. Numerous episodes of fluid escape were required, probably via microfractures, such that the released fluid did not obviously influence reaction progress in the layers through which it passed. The anomaly of beautifully preserved internal buffering signatures and the requirement for produced fluid locally to pass across layers in a deforming rock sequence suggest that the escaping fluid did not leave any readily observable tracks. This is explained by rapid rates of fracture propogation and fluid migration therein. This internally buffered system contrasts strongly with adjacent calc-silicate rocks that show evidence for infiltration of externally derived fluids at high fluid/rock ratios, and highlights the broad range of fluid behaviour that can be expected in deforming, heterogeneous rock sequences.  相似文献   
110.
In this article, we document a large number of focused fluid escape structures using high quality 2D seismic reflection data and multibeam bathymetry data from a poorly known area at the intersection of the northern South China Sea (SCS) and the western SCS. Three types of focused fluid escape systems are identified and described: mud volcanoes, pipes and associated pockmarks. The mud volcanoes occur singly or as clustered groups. The overpressure driving the mud volcanism is argued herein to be related to the generation of thermogenic hydrocarbons. The clustered distributions are related to localized tectonic uplift in the basin. Pipes mainly occur within the Guangle Uplift or accompany the mud volcano clusters. The pipes located within the Guangle Uplift are attributed to carbonate dissolution caused by hydrothermal fluids. Fluids ascended through these structures and were expelled at the palaeo‐seabed or present seabed forming palaeo‐pockmarks and present‐day pockmarks. Some ‘mega‐pockmarks’ show evidence of enlargement due to bottom currents. The marginal basins of the SCS are petroliferous, with attention gradually shifting to the deep‐water area. Our results show that fluid migration must be taken into account when assessing seabed stability. This analysis also improves our understanding the petroleum geology in the study area, and is also useful for predicating where chemosynthetic ecosystems may be located.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号