首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   9篇
  国内免费   4篇
测绘学   2篇
大气科学   5篇
地球物理   30篇
地质学   285篇
海洋学   9篇
天文学   87篇
综合类   3篇
自然地理   13篇
  2023年   1篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   12篇
  2018年   25篇
  2017年   16篇
  2016年   24篇
  2015年   7篇
  2014年   20篇
  2013年   21篇
  2012年   27篇
  2011年   36篇
  2010年   27篇
  2009年   27篇
  2008年   29篇
  2007年   26篇
  2006年   44篇
  2005年   1篇
  2004年   6篇
  2003年   8篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   8篇
  1997年   5篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有434条查询结果,搜索用时 31 毫秒
31.
Magmatic rocks of the Pikan and Un’ya massifs situated in eastern segment of the Mongolian-Okhotsk foldbelt are studied using isotopic-geochronological (U-Pb zircon dating) and geochemical methods. Two rock complexes different in age are recognized in the Pikan massif: the high-Al gabbro-tonalite association of the Middle Ordovician (468 ± Ma) and granodiorite-granite association of the Late Silurian-Early Devonian (415 ± 7 Ma). The Late Ordovician age (454 ± 5 Ma) is established for leucocratic granites of the Un’ya massif. As is suggested, the Pikan and Un’ya massifs are “allogenic blocks” detached from continental framework of the Mongolian-Okhotsk foldbelt and tectonically emplaced into the foldbelt structure at the last stage of its development.  相似文献   
32.
33.
Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 × 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ± 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite, and associated aplitic phases have textural features of Climax-type molybdenite porphyries in the western USA. Similar 40Ar/39Ar ages, mineral chemistry, and bulk-rock compositions indicate that the Chegem Tuff, intracaldera intrusion, and Eldjurta Granite are all parts of a large magmatic system that broadly resembles the middle Tertiary Questa caldera system and associated Mo deposits in northern New Mexico, USA. Because of their young age and superb three-dimensional exposures, rocks of the Chegem-Tirniauz region offer exceptional opportunities for detailed study of caldera structures, compositional gradients in volcanic rocks relative to cogenetic granites, and the thermal and fluid-flow history of a large young upper-crustal magmatic system.  相似文献   
34.
35.

H2 photoproduction and nitrogenase activities in two strains ofAnabaena variabilis marked wild type ATCC 29413 and mutant PK84 exposed to thermal stress (temperature higher than the normal incubation temperature of 30°C) were studied. Cultures of both strains collected from any interval of logarithmic growth phase exhibited high H2 photoproduction and nitrogenase activities when exposed to limited time heat shock during the assay process. In contrast, the algal H2 photoproduction rate of both strains fluctuated with long term thermal stress caused by increasing the growth temperature from 30°C to 36°C.

The changes of nitrogenase (the key H2 photobiosynthetic enzyme) activities in the mutant PK84 showed variation tendency similar to that of H2 photoproduction during exposure to thermal stress, indicating that fluctuation of H2 photoproduction in the mutant was mainly due to the variation of nitrogenase activities. A temporary maximal H2 photoproduction in the mutant PK84 (wild type ATCC29413) was observed when cells grew at 36°C for 14 (6) days. However, the responses of nitrogenase activities in the wild type to thermal stress were not completely similar to those in the mutant in spite of similar variations of H2 photoproduction in both strains. The data obtained in these studies suggested that the activities of other enzymes (in the wild strain) involved in H2 photoproduction were affected by thermal stress since H2 photoproduction maximized or dropped to 0 without variation tendency similar to that of nitrogenase activities.

Furthermore, an enhancement of H2 photoproduction speed of the mutant strain cultured in a 4.4 L laboratory photobioreactor was also observed when it was subjected to short time continuous charge of argon, and temperature rise.

All these results indicated that high temperature plays an important role in the photo-autotrophic H2 photoproduction, and that long term thermal stress is unfavourable for net H2 photoproduction in both strains ofA. variabilis though short-time heat shock is conducive to H2 photoproduction.

  相似文献   
36.

Siliceous unicellular microalgae — diatoms and silicoflagellates from sediments in Amur Bay were analyzed with high temporal resolution to examine changes over the last 150 years. The age of sediments was estimated from unsupported 210Pb controlled by 137Cs. Siliceous microalgae examined in each cm of two sediment cores demonstrated significant changes in the ecological structure of the assemblages that reflected changes in sedimentation conditions. During the years 1860–1910 the sediments accumulated under the great influence of river runoff. For about the next 50 years the number of freshwater species and marine benthic diatoms in sediments sharply declined, which is probably connected with the weakening of the effects of river runoff due to deforestation. Since the early 1960s the sedimentation conditions in the Amur Bay changed significantly. Marine planktonic diatoms and silicoflagellates began to prevail in sediments and this reflects increasing microphytoplankton productivity. One consequence of this was the formation of seasonal bottom hypoxia in Amur Bay. The ecological structure of diatom and silicoflagellate assemblages indicates that the sea level began to rise since the early 1960s and this corresponds to the water and air temperature increase in the area for that period. The obtained data suggest that the environmental changes over the last 150 years in Armur Bay are associated with the weakening of river runoff due to deforestation, sea level rise caused by global warming, and the increase of siliceous microplankton productivity that resulted in the formation of seasonal bottom hypoxia.

  相似文献   
37.
Palynological results from Julietta Lake currently provide the most direct evidence to support the existence of a glacial refugium for Pinus pumila in mountains of southwestern Beringia. Both percentages and accumulation rates indicate the evergreen shrub survived until at least ∼ 19,000 14C yr BP in the Upper Kolyma region. Percentage data suggest numbers dwindled into the late glaciation, whereas pollen accumulation rates point towards a more rapid demise shortly after ∼ 19,000 14C yr BP. Pinus pumila did not re-establish in any great numbers until ∼ 8100 14C yr BP, despite the local presence ∼ 9800 14C yr BP of Larixdahurica, which shares similar summer temperature requirements. The postglacial thermal maximum (in Beringia ∼ 11,000-9000 14C yr BP) provided Pinus pumila shrubs with equally harsh albeit different conditions for survival than those present during the LGM. Regional records indicate that in this time of maximum warmth Pinus pumila likely sheltered in a second, lower-elevation refugium. Paleoclimatic models and modern ecology suggest that shifts in the nature of seasonal transitions and not only seasonal extremes have played important roles in the history of Pinus pumila over the last ∼ 21,000 14C yr BP.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号