首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1064篇
  免费   87篇
  国内免费   18篇
测绘学   21篇
大气科学   96篇
地球物理   316篇
地质学   390篇
海洋学   73篇
天文学   191篇
综合类   9篇
自然地理   73篇
  2023年   4篇
  2022年   11篇
  2021年   17篇
  2020年   35篇
  2019年   35篇
  2018年   54篇
  2017年   76篇
  2016年   59篇
  2015年   55篇
  2014年   58篇
  2013年   69篇
  2012年   55篇
  2011年   72篇
  2010年   60篇
  2009年   56篇
  2008年   65篇
  2007年   48篇
  2006年   51篇
  2005年   42篇
  2004年   39篇
  2003年   42篇
  2002年   27篇
  2001年   15篇
  2000年   13篇
  1999年   16篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   7篇
  1994年   4篇
  1993年   9篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   6篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有1169条查询结果,搜索用时 15 毫秒
61.
62.
Activity-composition relationships of Ca3Al2Si3O12 (grs) in ternary Ca-Mg-Fe garnets of various compositions have been determined by reversed displaced equilibrium experiments at 1000° C and 900° C and pressures of 8 to 17 kbar. The mixing of grs in garnet is nearly ideal at 30 mol% grs, with positive deviations from ideality at lower grs contents. Models of garnet mixing currently in the literature do not predict this trend. Analysis of the present reversals, in conjunction with a garnet mixing model based solely on calorimetry measurements on the binary joins, indicates that a ternary interaction constant for a ternary asymmetric Margules model (Wohl 1953) cannot be constrained. Apparently, some aspects of the garnet binary joins are still not well-known. An alternative asymmetric empirical model, based on analysis of pseudobinary joins of constant Mg/Mg + Fe(Mg #), reproduces the data well and is able to predict grs activity coefficients for garnets with grs contents between 3 and 40 mol% and Mg numbers between 0 and 0.60. The grossular activity coefficient, grs, is given by:
  相似文献   
63.
This paper discusses the usage of mathematical morphology in image processing of remotely-sensed data for geologic interpretation. Particular attention is given to noise-reducing transformations of spectral bands before and after different methods of classification, and to the usage of textural context. The development of a viable processing strategy requires a multidisciplinary approach and expert knowledge in different areas: (a) geology, geomorphology, and vegetation in a study area, (b) properties of the sensor for imagery photointerpretation, (c) spectral/spatial properties of the digital data within an integrated dataset (remote sensing and ancillary data), and (d) data-processing tools including mathematical morphology theory. Examples of geometric characterization of Canadian LANDSAT scenes are described in which shape measurements are obtained using a PC-based hybrid image-processing and geographic information system, termed ILWIS, which was developed at ITC, in the Netherlands. Classes from supervised and unsupervised classification are compared to guide in geological mapping. Classes over individual occurrences of broad vegetation-landform units are studied to aid in environmental mapping. Field knowledge is the context necessary to construct expert procedures to drive sequences of data-processing steps toward a target result such as optimal classification, enhancement, or feature extraction. The interaction between expert rules and the image-processing steps can be based on synthetic measurements of shape to quantize the information either spatially or spectrally. Many useful geometrical transformations of spatially-distributed data are extensions or generalizations of spatial analysis functions typical of geographic information systems.  相似文献   
64.
The dynamics of a lava flow is studied by a two-dimensional model describing a viscous fluid with Bingham rheology, flowing down a slope. The temperature in the flow is calculated assuming that heat is transferred through the plug by conduction and is lost by radiation to the atmosphere at the top of the flow. Taken into account is that the increasing crystallization takes place in the flow as a consequence of cooling. The lava viscosity and yield stress are expressed as a function of crystallization degree as well as of temperature: in particular it is assumed that yield stress reaches a maximum value above the solidus temperature, according to experimental data. Dynamical variables, such as velocity and thickness of the flow, are calculated for different values of the maximum crystallization degree and the flow rate. The model shows how the lava flow dynamics is affected by cooling and crystallization. The cooling of the flow is controlled by the increase of yield stress, which produces a thicker plug and makes the heat loss slower. The increasing crystallization has two opposing effects on viscosity: it produces an increase of viscosity, but at the same time produces an increase of yield stress and hence reduces the heat loss and keeps the internal temperature high. As a consequence, lava flows are significantly affected by the dependence of yield stress on temperature and scarcely by the maximum crystallization degree.  相似文献   
65.
66.
Precipitable water measurements made coincident in time and space with direct broadband solar irradiance measurements are used in conjunction with an atmospheric transmission model to derive a parameter whose major dependence is on total aerosol extinction. Irradiance measurements are used to calculate an atmospheric transmission factor (ATF) that is independent of the instrument calibration and the extraterrestrial solar constant. The dependency of the ATF on precipitable water is determined using LOWTRAN5, an atmospheric transmission model with high spectral resolution. Precipitable water measurements are then used to adjust the measured ATF to correspond to an ATF value obtained for a constant precipitable water amount. The remaining variability in the adjusted ATF is due mostly to aerosol extinction. The technique is applied to a 6-year period (1978–1983) for clear-sky mornings at Mauna Loa, Hawaii (MLO). MLO ATF aerosol residuals are compared with independently measured monochromatic aerosol optical depth. Results show that the ATF aerosol residual is nearly equal to the 500 nm aerosol optical depth prior to the eruption of E1 Chichon, at which time a nonlinear time-dependent relationship between the two quantities is evident. ATF aerosol residuals reflect the spectrally integrated aerosol influence on transmission and, therefore, could indicate better than monochromatic optical depth the radiation balance perturbations due to aerosols. The 6-year precipitable water record for MLO, determined from a dual-channel sunphotometer, has a mean value of 0.3 cm. An annual cycle in precipitable water is evident, as is a 4-month 5-standard-deviation drought from December 1982 through March 1983.  相似文献   
67.
Arenal Volcano has effused basaltic andesite lava flows nearly continuously since September, 1968. The two different kinds of material in flows, lava and lava debris, have different rheologic properties and dynamic behavior. Flow morphology depends on the relationship between the amount and distribution of the lava and the debris, and to a lesser extent the ground morphology.Two main units characterize the flows: the channel zone and the frontal zone. The channel zone consists of two different units, the levées and the channel proper. A velocity profile in the channel shows a maximum value at the plug where the rate of shear is zero, and a velocity gradient increasing outward until, at the levées, the velocity becomes zero. Cooling produces a marked temperature gradient in the flow, leading to the formation of debris by brittle fracture when a critical value of shear rate to viscosity is reached. When the lava supply ceases, much of this debris and part of the lava is left behind after the flow nucleus drains out, forming a collapsed channel.Processes at the frontal zone include levée formation, debris formation, the change in shape of the front, and the choice of the flow path. These processes are controlled primarily by the rheological properties of the lava.Frontal zone dynamics can be understood by fixing the flow front as the point of reference. The lava flows through the channel into the front where it flows out into the levées, thereby increasing the length of the channel and permitting the front to advance. The front shows a relationship of critical height to the yield strength (τ0) surface tension, and slope; its continued movement is activated by the pressure of the advancing lava in the channel behind. For an ideal flow (isothermal, homogeneous, and isotropic) the ratio of the section of channel proper to the section of levées is calculated and the distance the front will have moved at any time tx can be determined once the amount of lava available to the front is known. Assuming that the velocity function of the front {G(t)} during the collapsing stage is proportional to the entrance pressure of the lava at the channel-front boundary, an exponential decrease of velocity through time is predicted, which shows good agreement with actual frontal velocity measurements taken on two flows. Local variations in slope have a secondary effect on frontal velocities.Under conditions of constant volume the frontal zone can be considered as a machine that consumes energy brought in by the lava to perform work (front advancement). While the front will use its potential energy to run the process, the velocity at which it occurs is controlled by the activation energy that enters the system as the kinetic energy of the lava flowing into the front. A relation for the energy contribution due to frontal acceleration is also derived. Finally the entrance pressure, that permits the front to deform, is calculated. Its small value confirms that the lava behaves very much like a Bingham plastic.  相似文献   
68.
The Buenos Aires (Argentina) and Venice (Italy) coastlands have experienced significant saltwater contamination of the phreatic aquifer, coastal erosion, hydrodynamic changes and relative sea level rise processes due to natural and man-induced factors. These factors expose coastal areas to morpho-hydro-geological hazards, such as soil desertification, frequency and degree of flooding, littoral erosion, and the silting of river mouths and channels. Man-made interventions and actions, such as beach mining, construction of coastal structures and exploitation of aquifers without an adequate knowledge of the hydrology setting and an adequate management program, worsen these natural hazards. Uncontrolled human activity induces environmental damage to the overall coastal plains. The coastal plains play an important role in the social/economic development of the two regions based on land use, such as agriculture, horticulture, breeding, and tourism, as well as industry. Results of investigations on saltwater contamination, sea level rise and morphological changes recently performed in these two coastal areas are presented here.  相似文献   
69.
70.
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H2O2 and NH3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud.In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron–Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron–Findeisen process when acting also in natural clouds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号