首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1073篇
  免费   52篇
  国内免费   11篇
测绘学   36篇
大气科学   183篇
地球物理   249篇
地质学   440篇
海洋学   34篇
天文学   133篇
综合类   6篇
自然地理   55篇
  2023年   6篇
  2022年   2篇
  2021年   26篇
  2020年   28篇
  2019年   25篇
  2018年   39篇
  2017年   31篇
  2016年   62篇
  2015年   47篇
  2014年   62篇
  2013年   79篇
  2012年   62篇
  2011年   75篇
  2010年   59篇
  2009年   70篇
  2008年   61篇
  2007年   47篇
  2006年   57篇
  2005年   50篇
  2004年   32篇
  2003年   23篇
  2002年   25篇
  2001年   23篇
  2000年   14篇
  1999年   20篇
  1998年   13篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1980年   2篇
  1979年   2篇
  1974年   1篇
  1965年   1篇
  1962年   1篇
  1960年   1篇
  1958年   1篇
  1957年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有1136条查询结果,搜索用时 15 毫秒
991.
Identifying Nonstationarity in Turbulence Series   总被引:1,自引:1,他引:0  
Because of rapid forcing by varying cloud and sky conditions, turbulence time series collected in the atmospheric surface layer over land may often be nonstationary. The meteorological community, however, has no consensus definition of what nonstationarity is and, thus, no consensus method for how to identify it. This study, therefore, adopts definitions for first-order and second-order stationarity taken from the time series analysis literature and implements new analysis techniques and probabilistic tests to quantify first-order and second-order nonstationarity. First-order nonstationarity manifests as a change in the series mean; second-order nonstationarity, as a change in the variance. The analysis identifies nonstationarity in surface-level turbulent temperature and water vapour series collected during two sample days with solar forcing influenced by cirrus and cirrostratus clouds, but that nonstationarity is not as severe as expected despite the rapid thermal forcing by these clouds. On the other hand, even with negligible cloud forcing, both sample days exhibited severe nonstationarity at night.  相似文献   
992.
We present how uncertainty and learning are classically studied in economic models. Specifically, we study a standard expected utility model with two sequential decisions, and consider two particular cases of this model to illustrate how uncertainty and learning may affect climate policy. While uncertainty has generally a negative effect on welfare, learning has always a positive, and thus opposite, effect. The effects of both uncertainty and learning on decisions are less clear. Neither uncertainty nor learning can be used as a general argument to increase or reduce emissions today without studying the specific intertemporal costs and benefits. Considering limits in applying the expected utility framework to climate change problems, we then consider a more recent framework with ambiguity-aversion which accounts for situations of imprecise or multiple probability distributions. We discuss both the impact of ambiguity-aversion on decisions and difficulties in applying such a non-expected utility framework to a dynamic context.  相似文献   
993.
994.
High quality observations of the atmosphere are particularly required for monitoring global climate change. Radio occultation (RO) data, using Global Navigation Satellite System (GNSS) signals, are well suited for this challenge. The special climate utility of RO data arises from their long-term stability due to their self-calibrated nature. The German research satellite CHAllenging Minisatellite Payload for geoscientific research (CHAMP) continuously records RO profiles since August 2001 providing the first opportunity to create RO based climatologies for a multi-year period of more than 5 years. A period of missing CHAMP data from July 3, 2006 to August 8, 2006 can be bridged with RO data from the GRACE satellite (Gravity Recovery and Climate Experiment). We have built seasonal and zonal mean climatologies of atmospheric (dry) temperature, microwave refractivity, geopotential height and pressure with 10° latitudinal resolution. We show representative results with focus on dry temperatures and compare them with analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). Although we have available only about 150 CHAMP profiles per day (compared to millions of data entering the ECMWF analyses) the overall agreement between 8 and 30 km altitude is in general very good with systematic differences <0.5 K in most parts of the domain. Pronounced systematic differences (exceeding 2 K) in the tropical tropopause region and above Antarctica in southern winter can almost entirely be attributed to errors in the ECMWF analyses. Errors resulting from uneven sampling in space and time are a potential error source for single-satellite climatologies. The average CHAMP sampling error for seasonal zonal means is <0.2 K, higher values occur in restricted regions and time intervals which can be clearly identified by the sampling error estimation approach we introduced (which is based on ECMWF analysis fields). The total error of this new type of temperature climatologies is estimated to be <0.5 K below 30 km. The recently launched Taiwan/U.S. FORMOSAT-3/COSMIC constellation of 6 RO satellites started to provide thousands of RO profiles per day, but already now the single-satellite CHAMP RO climatologies improve upon modern operational climatologies in the upper troposphere–lower stratosphere and can act as absolute reference climatologies for validation of more bias-sensitive climate datasets and models.  相似文献   
995.
A thermobarometric and petrologic study of basanites erupted from young volcanic cones along the submarine portions of the three El Hierro rift zones (NE-Rift, NW-Rift and S-Ridge) has been performed to reconstruct magma plumbing and storage beneath the island. Mineral-melt thermobarometry applied to naturally quenched glass and clinopyroxene rims yields pressures ranging from 350 to 1070 MPa with about 80% of the calculated pressures being in the range of 600–800 MPa. This corresponds to a depth range of 19–26 km, implying that the main level of final crystal fractionation is within the uppermost mantle. No systematic dependence between sample locality and fractionation pressures could be observed. Olivine and clinopyroxene crystals in the rocks are complexly zoned and have, on an inter-sample as well as on an intra-sample scale, highly variable core and rim compositions. This can best be explained by mixing of multiply saturated (olivine, magnetite, clinopyroxene, ilmenite), moderately evolved magmas with more mafic magmas being either only saturated with olivine + spinel or with olivine + spinel + clinopyroxene. The inter-sample differences indicate derivation from small, isolated magma chambers which have undergone distinct fractionation and mixing histories. This is in contrast to oceanic intraplate volcanoes situated on plumes with high melt supply rates, e.g. Kilauea Volcano (Hawaii), where magma is mainly transported through a central conduit system and stored in a shallow magma chamber prior to injection into the rift zones. The plumbing system beneath El Hierro rather resembles the magma storage systems beneath, e.g. Madeira or La Palma, indicating that small, intermittent magma chambers might be a common feature of oceanic islands fed by plumes with relatively low fluxes, which results in only limited and periodic magma supply.  相似文献   
996.
Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria   总被引:1,自引:0,他引:1  
Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and offer potential signatures of those metabolisms that can be looked for in the geological record.  相似文献   
997.
We determined the speciation of Zn in 49 field soils differing widely in pH (4.1–7.7) and total Zn content (251–30,090 mg/kg) by using extended X-ray absorption fine structure (EXAFS) spectroscopy. All soils had been contaminated since several decades by inputs of aqueous Zn with runoff-water from galvanized power line towers. Pedogenic Zn species identified by EXAFS spectroscopy included Zn in hydroxy-interlayered minerals (Zn-HIM), Zn-rich phyllosilicates, Zn-layered double hydroxide (Zn-LDH), hydrozincite, and octahedrally and tetrahedrally coordinated sorbed or complexed Zn. Zn-HIM was only observed in (mostly acidic) soils containing less than 2000 mg/kg of Zn, reflecting the high affinity but limited sorption capacity of HIM. Zn-bearing precipitates, such as Zn-LDH and Zn-rich trioctahedral phyllosilicates, became more dominant with increasing pH and increasing total Zn content relative to available adsorption sites. Zn-LDH was the most abundant Zn-precipitate and was detected in soils with pH > 5.2. Zn-rich phyllosilicates were detected even at lower soil pH, but were generally less abundant than Zn-LDH. Hydrozincite was only identified in two calcareous soils with extremely high Zn contents. In addition to Zn-LDH, large amounts of Zn in highly contaminated soils were mainly accumulated as sorbed/complexed Zn in tetrahedral coordination. Soils grouped according to their Zn speciation inferred from EXAFS spectroscopy mainly differed with respect to soil pH and total Zn content. Clear differences were observed with respect to Zn fractionation by sequential extraction: From Zn-HIM containing soils, most of the total Zn was recovered in the exchangeable and the most recalcitrant fractions. In contrast, from soils containing the highest percentage of Zn-precipitates, Zn was mainly extracted in intermediate extraction steps. The results of this study demonstrate that soil pH and Zn contamination level relative to available adsorption sites are the most important factors controlling the formation of pedogenic Zn-species in aerobic soils and, consequently, Zn fractionation by sequential extraction.  相似文献   
998.
The importance of melt extraction for tracing mantle heterogeneity   总被引:3,自引:0,他引:3  
Numerous isotope and trace element studies of mantle rocks and oceanic basalts show that the Earth’s mantle is heterogeneous. The isotopic variability in oceanic basalts indicates that most mantle sources consist of complex assemblages of two or more components with isolated long-term chemical evolution, on both global and local scales. The range in isotope and highly incompatible element ratios observed in oceanic basalts is commonly assumed to directly reflect that of their mantle sources. Accordingly, the end-points of isotope arrays are taken to represent the isotopic composition of the different components in the underlying mantle, which is then used to deduce the origin of mantle heterogeneity. Here, a melting model for heterogeneous mantle sources is presented that investigates how and to what extent isotope and trace element signatures are conveyed from source to melt. We model melting of a pyroxenite-bearing peridotite using recent experimental constrains for melting and partitioning of pyroxenite and peridotite. Identification of specific pyroxenite melting signatures allows finger-printing of pyroxenite melts and confirm the importance of lithological heterogeneity in the Earth’s mantle. The model results and the comparison of the calculated and observed trace element-isotope systematics in selected MORB and OIB suites (e.g. from the East Pacific Rise, Iceland, Tristan da Cunha, Gough and St.Helena) further show that factors such as the relative abundance of different source components, their difference in solidus temperature, and especially the extent, style and depth range of melt aggregation fundamentally influence the relationship between key trace element and isotope ratios (e.g. Ba/Th, La/Nb, Sr/Nd, La/Sm, Sm/Yb, 143Nd/144Nd). The reason for this is that any heterogeneity present in the mantle is averaged or, depending on the effectiveness of the melt mixing process, even homogenized during melting and melt extraction. Hence to what degree mantle heterogeneity is reflected in the erupted melts is not only a function of source and melting-induced variability. It also depends on the extent of mixing during melting and melt extraction and thus strongly on the relative incompatibility of the elements considered. The observed trace element variation in erupted melts can be greater or smaller than that of their mantle sources, depending on the incompatibility of the elements investigated. The isotopic variability in erupted melts, on the other hand, is generally smaller than that of their mantle source. Melt mixing during melt extraction consequently has an important influence on the relative extent of variation, and hence the degree of correlation between the isotope and trace element ratios. Overall fewer correlations between trace element and isotope ratios are expected whenever melts are extracted from a restricted depth range, as is the case for ocean island basalts, than for cases where melts are extracted over a larger depth interval (mid ocean ridges and especially ridge centered hotspots like Iceland). While the isotopic composition of the most enriched melts may correspond closely to those of the enriched source component, even the most depleted mid ocean ridge basalts are likely to underestimate the isotopic depletion of the depleted mantle component. These observations imply that using the chemical and isotopic range observed in oceanic basalts as directly representative of that in the corresponding mantle source can be misleading, since this assumption is strictly true only for homogeneous mantle sources. In addition to identifying source or partitioning-related differences in melts from different mantle sources, inferring the true composition, origin, and distribution of heterogeneous components in the Earth’s mantle therefore requires detailed knowledge about the mechanisms of melting and melt mixing during the melt extraction process. Only if these processes and their influence on the isotope-trace element relationship are understood, can the composition and origin of the different source components, and thus mantle heterogeneity, be accurately constrained.  相似文献   
999.
An estimate of the glacier ice volume in the Swiss Alps   总被引:1,自引:0,他引:1  
Changes in glacier volume are important for questions linked to sea-level rise, water resource management, and tourism industry. With the ongoing climate warming, the retreat of mountain glaciers is a major concern. Predictions of glacier changes, necessarily need the present ice volume as initial condition, and for transient modelling, the ice thickness distribution has to be known. In this paper, a method based on mass conservation and principles of ice flow dynamics is applied to 62 glaciers located in the Swiss Alps for estimating their ice thickness distribution. All available direct ice thickness measurements are integrated. The ice volumes are referenced to the year 1999 by means of a mass balance time series. The results are used to calibrate a volume–area scaling relation, and the coefficients obtained show good agreement with values reported in the literature. We estimate the total ice volume present in the Swiss Alps in the year 1999 to be 74 ± 9 km3. About 12% of this volume was lost between 1999 and 2008, whereas the extraordinarily warm summer 2003 caused a volume loss of about 3.5%.  相似文献   
1000.

The period between 21 June and 8 October, 2007 (Carrington rotations 2058 to 2061), comprising the Ulysses ecliptic plane crossing, was characterized by low solar activity. Excluding the small solar energetic particle events observed during July, the ion increases observed in the inner heliosphere between 100?keV/n and 10?MeV/n were associated with Corotating Interaction Regions (CIRs). In this work, we investigate CIR-related ion increases using multipoint observations from Ulysses, ACE, and the twin STEREO spacecraft. The ballistic backmapping technique has been used to correlate in situ observations of these spacecraft and remote-sensing observations of coronal holes. Although the radial, longitudinal and latitudinal separation of the spacecraft (except Ulysses) are relatively small, we find discrepancies when a detailed comparison of narrow structures like stream interfaces and CIR-associated shocks is performed. Therefore we concentrate on the two CIR events from day 5 to day 10 of August 2007 and from day 25 to day 31 of August 2007, which lend themselves to a more undisturbed comparison. Using the multi-spacecraft measurements we could determine a radial gradient of 230±30% AU?1, which is consistent with previous results by van Hollebeke et al. (J. Geophys. Res. 83, 4723, 1978) of ~?350% AU?1 using Helios and Pioneer data.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号