首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2536篇
  免费   147篇
  国内免费   32篇
测绘学   88篇
大气科学   289篇
地球物理   653篇
地质学   785篇
海洋学   216篇
天文学   352篇
综合类   6篇
自然地理   326篇
  2022年   13篇
  2021年   48篇
  2020年   59篇
  2019年   53篇
  2018年   66篇
  2017年   80篇
  2016年   106篇
  2015年   88篇
  2014年   98篇
  2013年   183篇
  2012年   117篇
  2011年   157篇
  2010年   119篇
  2009年   141篇
  2008年   140篇
  2007年   140篇
  2006年   132篇
  2005年   109篇
  2004年   91篇
  2003年   92篇
  2002年   81篇
  2001年   51篇
  2000年   56篇
  1999年   38篇
  1998年   34篇
  1997年   33篇
  1996年   28篇
  1995年   30篇
  1994年   20篇
  1993年   19篇
  1992年   12篇
  1991年   18篇
  1990年   17篇
  1989年   29篇
  1988年   12篇
  1987年   20篇
  1986年   12篇
  1985年   22篇
  1984年   14篇
  1983年   14篇
  1982年   12篇
  1981年   18篇
  1980年   10篇
  1979年   13篇
  1978年   9篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   8篇
  1972年   5篇
排序方式: 共有2715条查询结果,搜索用时 125 毫秒
991.
992.
Extracting true amplitude versus angle common image gathers is one of the key objectives in seismic processing and imaging. This is achievable to different degrees using different migration techniques (e.g., Kirchhoff, wavefield extrapolation, and reverse time migration techniques) and is a common tool in exploration, but the costs can vary depending on the selected migration algorithm and the desired accuracy. Here, we investigate the possibility of combining the local‐shift imaging condition, specifically the time‐shift extended imaging condition, for angle gathers with a Kirchhoff migration. The aims are not to replace the more accurate full‐wavefield migration but to offer a cheaper alternative where ray‐based methods are applicable and to use Kirchhoff time‐lag common image gathers to help bridge the gap between the traditional offset common image gathers and reverse time migration angle gathers; finally, given the higher level of summation inside the extended imaging migration, we wish to understand the impact on the amplitude versus angle response. The implementation of the time‐shift imaging condition along with the computational cost is discussed, and results of four different datasets are presented. The four example datasets, two synthetic, one land acquisition, and a marine dataset, have been migrated using a Kirchhoff offset method, a Kirchhoff time‐shift method, and, for comparison, a reverse time migration algorithm. The results show that the time‐shift imaging condition at zero time lag is equivalent to the full offset stack as expected. The output gathers are cleaner and more consistent in the time‐lag‐derived angle gathers, but the conversion from time lag to angle can be considered a post‐processing step. The main difference arises in the amplitude versus offset/angle distribution where the responses are different and dramatically so for the land data. The results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers. The same disadvantages with a ray‐based approach will apply using the extended imaging condition relative to a wave equation angle gather solution. Nevertheless, using this approach allows one to explore the relationship between the velocity model and focusing of the reflected energy, to use the Radon transformation to remove noise and multiples, and to generate consistent products from a ray‐based migration and a full‐wave equation migration, which can then be interchanged depending on the process under study.  相似文献   
993.
In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., KNMR) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated KNMR are within one order of magnitude of KFLUTe. The empirical parameters obtained from calibrating the NMR data suggest that “intermediate diffusion” and/or “slow diffusion” during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, “intermediate diffusion” dominates the relaxation time, therefore assuming “fast diffusion” in the interpretation of NMR data from fractured rock may lead to inaccurate KNMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable KNMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements.  相似文献   
994.
This methods paper details the first attempt at monitoring bank erosion, flow and suspended sediment at a site during flooding on the Mekong River induced by the passage of tropical cyclones. We deployed integrated mobile laser scanning (MLS) and multibeam echo sounding (MBES), alongside acoustic Doppler current profiling (aDcp), to directly measure changes in river bank and bed at high (~0.05 m) spatial resolution, in conjunction with measurements of flow and suspended sediment dynamics. We outline the methodological steps used to collect and process this complex point cloud data, and detail the procedures used to process and calibrate the aDcp flow and sediment flux data. A comparison with conventional remote sensing methods of estimating bank erosion, using aerial images and Landsat imagery, reveals that traditional techniques are error prone at the high temporal resolutions required to quantify the patterns and volumes of bank erosion induced by the passage of individual flood events. Our analysis reveals the importance of cyclone‐driven flood events in causing high rates of erosion and suspended sediment transport, with a c. twofold increase in bank erosion volumes and a fourfold increase in suspended sediment volumes in the cyclone‐affected wet season. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
995.
A detailed structural glaciological study carried out on Kvíárjökull in SE Iceland reveals that recent flow within this maritime glacier is concentrated within a narrow corridor located along its central axis. This active corridor is responsible for feeding ice from the accumulation zone on the south‐eastern side of Öræfajökull to the lower reaches of the glacier and resulted in a c. 200 m advance during the winter of 2013–2014 and the formation of a push‐moraine. The corridor comprises a series of lobes linked by a laterally continuous zone of highly fractured ice characterised by prominent flow‐parallel crevasses, separated by shear zones. The lobes form highly crevassed topographic highs on the glacier surface and occur immediately down‐ice of marked constrictions caused by prominent bedrock outcrops located on the northern side of the glacier. Close to the frontal margin of Kvíárjökull, the southern side of the glacier is relatively smooth and pock‐marked by a number of large moulins. The boundary between this slow moving ice and the active corridor is marked by a number of ice flow‐parallel strike‐slip faults and a prominent dextral shear zone which resulted in the clockwise rotation and dissection of an ice‐cored esker exposed on the glacier surface. It is suggested that this concentrated style of glacier flow identified within Kvíárjökull has affinities with the individual flow units which operate within pulsing or surging glaciers. © 2017 The Authors Earth Surface Processes and Landforms © 2017 John Wiley & Sons, Ltd.  相似文献   
996.
Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet‐based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.  相似文献   
997.
The discussion presents questions regarding the recommended damping scheme from the discussed paper and provides an alternative recommendation. The discussion also requests further explanation on behavioral differences between models incorporating the P‐delta and corotational approaches that are presented in the paper. Responses to these questions are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
998.
Beaches of tropical island coasts exhibit high levels of diversity in composition and form in comparison with their continental counterparts. To investigate the nature and origin of this diversity, individual beach morphology and sedimentology was investigated in the British Virgin Islands (BVI), a Caribbean archipelago of > 60 high volcanic and low reef islands. The islands exhibit a diversity of orientations (some facing the Atlantic and some the Caribbean), elevation and gradient, rock type and wave energy. An examination of 100 beaches in the archipelago revealed a first-order division into sand (70 beaches) and coral rubble (30 beaches). These beaches occur in seven planform types (determined by the antecedent geological framework) and are further subdivided according to shoreface type (seagrass, sandy shoreface, or reef). Mainland-attached headland-embayment beaches are the most common form of sand beach while coral rubble beaches usually occur as barriers that enclose salt ponds and wetlands. Among sand beaches, carbonate content is greatest on Atlantic-facing beaches, and coral rubble beaches are more common on Caribbean-facing beaches. Grain size characteristics on sandy beaches are highly variable and range from fine to very coarse sands while coral rubble beaches range up to boulder-sized clasts. The local source material is a primary determinant of sediment composition. The local factors such as the underlying geology, source and availability of sediments are the primary determinants of beach form, composition and texture in the BVI. Oceanographic and climatic conditions such as the prevailing easterly trade winds and waves which seasonally range in direction from east-northeast to southeast as well as beach orientation to Atlantic- or Caribbean-facing waves also contribute to the variability, but in a secondary role. © 2019 John Wiley & Sons, Ltd.  相似文献   
999.
Intertidal bars are common in mesotidal/macrotidal low-to-moderate energy coastal environments and an understanding of their morphodynamics is important from the perspective of both coastal scientists and managers. However, previous studies have typically been limited by considering bar systems two-dimensionally, or with very limited alongshore resolution. This article presents the first multi-annual study of intertidal alongshore bars and troughs in a macrotidal environment using airborne LiDAR (light detection and ranging) data to extract three-dimensional (3D) bar morphology at high resolution. Bar and trough positions are mapped along a 17.5 km stretch of coastline in the northwest of England on the eastern Irish Sea, using eight complete, and one partial, LiDAR surveys spanning 17 years. Typically, 3–4 bars are present, with significant obliquity identified in their orientation. This orientation mirrors the alignment of waves from the dominant south-westerly direction of wave approach, undergoing refraction as they approach the shoreline. Bars also become narrower and steeper as they migrate onshore, in a pattern reminiscent of wave shoaling. This suggests that the configuration of the bars is being influenced by overlying wave activity. Net onshore migration is present for the entire coastline, though rates vary alongshore, and periods of offshore migration may occur locally, with greatest variability between northern and southern regions of the coastline. This work highlights the need to consider intertidal bar systems as 3D, particularly on coastlines with complex configurations and bathymetry, as localized studies of bar migration can overlook 3D behaviour. Furthermore, the wider potential of LiDAR data in enabling high-resolution morphodynamic studies is clear, both within the coastal domain and beyond. © 2019 John Wiley & Sons, Ltd.  相似文献   
1000.
Lewis  Matt J.  Palmer  Tamsin  Hashemi  Resa  Robins  Peter  Saulter  Andrew  Brown  Jenny  Lewis  Huw  Neill  Simon 《Ocean Dynamics》2019,69(3):367-384
Ocean Dynamics - The combined hazard of large waves occurring at an extreme high water could increase the risk of coastal flooding. Wave-tide interaction processes are known to modulate the wave...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号