首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1555篇
  免费   87篇
  国内免费   12篇
测绘学   51篇
大气科学   100篇
地球物理   450篇
地质学   605篇
海洋学   143篇
天文学   210篇
综合类   9篇
自然地理   86篇
  2023年   10篇
  2022年   8篇
  2021年   23篇
  2020年   25篇
  2019年   30篇
  2018年   72篇
  2017年   64篇
  2016年   102篇
  2015年   67篇
  2014年   96篇
  2013年   100篇
  2012年   88篇
  2011年   107篇
  2010年   76篇
  2009年   126篇
  2008年   79篇
  2007年   55篇
  2006年   56篇
  2005年   63篇
  2004年   41篇
  2003年   42篇
  2002年   37篇
  2001年   20篇
  2000年   28篇
  1999年   18篇
  1998年   24篇
  1997年   17篇
  1996年   10篇
  1995年   14篇
  1994年   12篇
  1993年   13篇
  1992年   5篇
  1991年   4篇
  1990年   13篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   7篇
  1984年   8篇
  1983年   8篇
  1982年   5篇
  1980年   3篇
  1979年   4篇
  1975年   3篇
  1957年   3篇
  1956年   4篇
  1955年   3篇
  1953年   3篇
  1950年   3篇
排序方式: 共有1654条查询结果,搜索用时 31 毫秒
901.
Mapping, lithostratigraphic, biostratigraphic and structural detailed analyses in Sierra Espuña area (Internal Betic Zone, SE Spain) have allowed us to reconstruct the Jurassic–Cretaceous evolution of the Westernmost Mesomediterranean Microplate palaeomargin and, by correlation with other sectors (Northern Rift, central and western Internal Betic Zone), to propose a geodynamic evolution for the Westernmost Tethys. Extension began from Late Toarcian, when listric normal faults activated; these faults are arranged in three categories: large-scale faults, separating hectometric cortical blocks; main faults, dividing the former blocks into some kilometre-length blocks; and secondary faults, affecting the kilometric blocks. This fault ensemble, actually outcropping, in the Sierra Espuña area, broke the palaeomargin allowing the westerly Tethyan Oceanic aperture with an extension at about 17.2%. Extension was not homogeneous in time, being the Late Toarcian to the Dogger–Malm boundary the period when blocks underwent the greatest movement (rifting phase), leading to the drowning of the area (8.2% extension). During the Malm (drifting phase) extension followed (5.7%), while during the Cretaceous a change to pelagic facies is recorded with an extension of about 3.3% (post-drift stage). This evolution in the Westernmost Tethys seems to be related to areas out of the limit of significant crustal extension in the hanging wall block of the main cortical low-angle fault of the rifting.  相似文献   
902.
The easternmost domain of the Borborema Province, northeastern Brazil, presents widespread, extensional-related high-temperature metamorphism during the Brasiliano (=Pan-African) orogeny. This event reached the upper amphibolite to granulite facies and provoked generalized migmatization of Proterozoic metapelitic rocks of the Seridó Group and tonalitic to granodioritic orthogneisses of the Archean to Paleoproterozoic basement. We report new geochronological data based on electron microprobe dating of monazite from metapelitic migmatite and leuconorite within the high-T shear zones that make up the eastern continuation of the huge E–W Patos shear belt. These data were also constrained by using the Sm–Nd isotopic systematic on garnet from a syntectonic alkaline granite and two garnet-bearing leucosomes. The results suggest an age of about 578 to 574 Ma for the peak of the widespread high-T metamorphism. This event is best recorded by Sm–Nd garnet-whole rock ages. The U–Th–Pb isotopes on monazite of the metapelitic migmatite show a younger thermal event at 553 ± 10 Ma. When compared to the Sm–Nd garnet-whole rock ages, the U–Th–Pb electron probe monazite ages seem to record an event of slightly lower temperatures after the peak of the high-T metamorphism. This may reflect the difference in the isotopic behavior of the geochronological methods employed. Otherwise, the U–Th–Pb ages on monazites could indicate an event not yet very well defined. In anyway, this paper reveals the partial or even complete re-opening and resetting of the U–Th–Pb isotopic system produced by the action of low-T Ca-rich fluid.  相似文献   
903.
The multidisciplinary study of sediment cores from Laguna Zoñar (37°29′00′′ N, 4°41′22′′ W, 300 m a.s.l., Andalucía, Spain) provides a detailed record of environmental, climatic and anthropogenic changes in a Mediterranean watershed since Medieval times, and an opportunity to evaluate the lake restoration policies during the last decades. The paleohydrological reconstructions show fluctuating lake levels since the end of the Medieval Warm Period (ca. AD 1300) till the late 19th century and a more acute dry period during the late 19th century – early 20th century, after the end of the Little Ice Age. Human activities have played a significant role in Laguna Zoñar hydrological changes since the late 19th century, when the outlet was drained, and particularly in the mid-20th century (till 1982) when the spring waters feeding the lake were diverted for human use. Two main periods of increased human activities in the watershed are recorded in the sediments. The first started with the Christian conquest and colonization of the Guadalquivir River Valley (13th century) particularly after the fall of the Granada Kingdom (15th century). The second one corresponds to the late 19th century when more land was dedicated to olive cultivation. Intensification of soil erosion occurred in the mid-20th century, after the introduction of farm machinery. The lake was declared a protected area in the early 1980s, when some agricultural practices were restricted, and conservation measures implemented. As a consequence, the lake level increased, and some littoral zones were submerged. Pollen indicators reflect this limnological change during the last few decades. Geochemical indicators show a relative decrease in soil erosion, but not changes in the amount of chemical fertilizers reaching the lake. This study provides an opportunity to evaluate the relative significance of human vs. climatic factors in lake hydrology and watershed changes during historical times. Paleolimnological reconstructions should be taken into account by natural resources agencies to better define lake management policies, and to assess the results of restoration policies.  相似文献   
904.
We analyze observations from eight GPS campaigns carried out between 1997 and 2005 on a network of 13 sites in the Suez–Sinai area, where separation between the African and the Arabian plates takes place. This is the key area to understand if and in which way Sinai behaves like a sub-plate of the African plate and the role played by seismic and geodetic (long-term) deformation release.Our analysis shows that, on average, the Suez–Sinai area motion, in terms of ITRF00 velocities, matches the African plate motion defined by the NNR-NUVEL-1A model.The horizontal principal strain rate axes estimated separately in the Gulf of Suez area and in the northern Sinai vary from compression across the Gulf (−2.2 ± 1.2) × 10−8 year−1 to NE extension (1.0 ± 1.5) × 10−8 year−1 in the North, showing the presence of two distinct domains, so that in our opinion Sinai cannot be considered simply a unique rigid block.The analysis of GPS baseline length variations shows short-term deformations across the Gulf of Suez, reaching up a maximum value of more than 1 cm in 8 years.Since current geodynamical models do not predict significant tectonic deformation in this area, we work under the hypothesis that a contribute may be expected by post-seismic relaxation effects. Under this hypothesis, we compare the baselines length variations with the post-seismic relaxation field associated with five major local earthquakes occurred in the area, testing two different viscoelastic models. Our results show that the detected short-term deformations are better modeled for viscosity values of 1018 Pa s in the lower crust and 1020 Pa s in the asthenosphere. However, since the modeled post-seismic effect results modest and a certain amount of the detected deformation is not accounted for, we think that an improved modeling should take into account the lateral heterogeneities of crust and upper mantle structures.  相似文献   
905.
In this work we study one of the most palaeopedological sequence formed in Central Spain, which is located on the Pliocene–Pleistocene erosional surface in the Madrid Basin. We also analyse its relationship to erosive and sedimentary Pleistocene events in order to obtain new data for a correct interpretation of the origin and evolution of forms at the top of tabular lands in this site. The geomorphic features and the properties of a sequence of very red palaeosols that developed on this old surface can help us in the understanding of the palaeoclimatic evolution of Central Spain in a Mediterranean climate. They were examined to identify pedologic and climatic changes during the Quaternary. The soil sequence comprises intercalated palaeoargillic and palaeopetrocalcic horizons. The clay minerals are mainly illite, kaolinite, smectite and sepiolite. The alternation of argillic and calcic horizons, limestone debris (cryoclastic colluvions) and aeolian sands suggests succeeding periods of phytostability and phytoinstability (biostasis/rhexistasis). Argillation, rubification and calcium carbonate accumulation were repeated throughout the Pleistocene and it is hypothesised that climatic conditions during numerous stages of this period were not very different from the present conditions.  相似文献   
906.
We present some improvements of a gravity inversion method to determine the geometry of the anomalous bodies for priori density contrasts. The 3-D method is based on an exploratory process applied, not for the global model, but for the steps of a growth approach. The (positive and/or negative) anomalous structure is described by successive aggregation of cells, while its corresponding gravity field remains nearly proportional to the observed one. Moreover, a simple (e.g. linear) regional trend can be simultaneously adjusted. The corresponding program is applied to new gravity data on the volcanic island of Faial (Azores archipelago). The inversion approach shows a subsurface anomalous structure for the island, the main feature being an elongated high-density body. The body is interpreted as a compact sheeted dyke swarm, emplaced along Faial-Pico Fracture Zone, a leaky transform structure that forms the current boundary between Eurasian and African plates in the Azores area. The new results in this paper are (1) a Bouguer gravity anomaly map, (2) several improvements in the inversion process (robust process, optimal balance fitness/model magnitude), (3) a new gravimetric method for estimating the mean terrain density, (4) a 3-D model for subsurface mass anomalies in Faial and (5) some interpretative conclusions about a main intrusive complex detected under the island as a wall-like structure extending from a depth of 0.5 to 6 km b.s.l., with a N100°E trend and corresponding to an early fissural volcanic episode controlled by the regional tectonics.  相似文献   
907.
Fluidization of pyroclastic solids has long been indicated as one key to explain the enhanced mobility of dense pyroclastic gravity currents and their associated hazard. However there is a lack of characterization of the actual pattern and extent of fluidization establishing in real pyroclastic flows and some authors still raise arguments about the relevance of fluidization to the mobility of dense pyroclastic gravity currents. The present paper addresses the fluidization of pyroclastic granular solids with a specific focus on the analysis of factors that may promote homogeneous fluidization and retard solids de-aeration and consolidation. These factors include fines content, particle polydispersity and the establishment of shear flow.  相似文献   
908.
The joint probability method (JPM) to estimate the probability of extreme sea levels (Pugh and Vassie, Extreme sea-levels from tide and surge probability. Proc. 16th Coastal Engineering Conference, 1978, Hamburg, American Society of Civil Engineers, New York, pp 911–930, 1979) has been applied to the hourly records of 13 tide-gauge stations of the tidally dominated Atlantic coast of France (including Brest, since 1860) and to three stations in the southwest of the UK (including Newlyn, since 1916). The cumulative total length of the available records (more than 426 years) is variable from 1 to 130 years when individual stations are considered. It appears that heights estimated with the JPM are almost systematically greater than the extreme heights recorded. Statistical analysis shows that this could be due: (1) to surge–tide interaction (that may tend to damp surge values that occur at the time of the highest tide levels), and (2) to the fact that major surges often occur in seasonal periods that may not correspond to those of extreme astronomical tides. We have determined at each station empirical ad hoc correction coefficients that take into account the above two factors separately, or together, and estimated return periods for extreme water levels also at stations where only short records are available. For seven long records, for which estimations with other computing methods (e.g. generalized extreme value [GEV] distribution and Gumbel) can be attempted, average estimations of extreme values appear slightly overestimated in relation to the actual maximum records by the uncorrected JPM (+16.7 ± 7.2 cm), and by the Gumbel method alone (+10.3 ± 6.3 cm), but appear closer to the reality with the GEV distribution (−2.0 ± 5.3 cm) and with the best-fitting correction to the JPM (+2.9 ± 4.4 cm). Because the GEV analysis can hardly be extended to short records, it is proposed to apply at each station, especially for short records, the JPM and the site-dependent ad hoc technique of correction that is able to give the closest estimation to the maximum height actually recorded. Extreme levels with estimated return times of 10, 50 and 100 years, respectively, are finally proposed at all stations. Because astronomical tide and surges have been computed (or corrected) in relation to the yearly mean sea level, possible changes in the relative sea level of the past, or foreseeable in the future, can be considered separately and easily added to (or deduced from) the extremes obtained. Changes in climate, on the other hand, may modify surge and tide distribution and hence return times of extreme sea levels, and should be considered separately. Parts of this paper have been presented orally at the session “Geophysical extremes: scaling aspects and modern statistical approaches” of the EGU General Assembly, Vienna, 2–6 April 2006.  相似文献   
909.
Values between 1.0 and 1.5 mm/yr, often quoted in the literature for the present-day rate of eustatic sea-level rise, have been obtained in many cases by averaging records of tide-gauge stations, after having omitted areas of glacio-isostatic or tectonic uplift, though including areas of subsidence. This approach results in an overestimation of the sea-level rise, which is increased by the fact that, for geological reasons and human-induced factors, subsidence is expected to occur more frequently than uplift in oceanic and coastal areas.In the absence of absolutely stable areas in the world, a new approach is proposed, which shows that on the Atlantic coasts of Europe, when land movements are removed, the sea-level rise during the last century has been only 4–6 cm, i.e. two to three times smaller than the estimation claimed by most authors. This value is consitent with current computations of the recent effects on sea level of the thermal expansion of the ocean water (2–5 cm) and of the melting of small glaciers (1.4–5 cm).Estimations of possible sea-level changes during the next century diverge with different authors, varying from a sea-level drop of 7 cm to a sea-level rise of over 3.5 m. There are some problems however with the assumptions made and some feedback phenomena have not yet been taken into account. In addition, the relationship between the atmospheric CO2 content, temperature and sea level is far from being demonstrated for the recent past.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号