首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   7篇
  国内免费   1篇
测绘学   2篇
大气科学   2篇
地球物理   27篇
地质学   53篇
海洋学   7篇
天文学   5篇
综合类   4篇
自然地理   5篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   8篇
  2017年   12篇
  2016年   13篇
  2015年   9篇
  2014年   7篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   6篇
  2008年   2篇
  2006年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1989年   1篇
  1986年   1篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
  1970年   3篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
71.
The Lane–Emden type equations are employed in the modeling of several phenomena in the areas of mathematical physics and astrophysics. These equations are categorized as non-linear singular ordinary differential equations on the semi-infinite domain $[0,\infty )$ . In this research we introduce the Bessel orthogonal functions as new basis for spectral methods and also, present an efficient numerical algorithm based on them and collocation method for solving these well-known equations. We compare the obtained results with other results to verify the accuracy and efficiency of the presented scheme. To obtain the orthogonal Bessel functions we need their roots. We use the algorithm presented by Glaser et al. (SIAM J Sci Comput 29:1420–1438, 2007) to obtain the $N$ roots of Bessel functions.  相似文献   
72.
Summary Sixteen geopotential model testing sites in the central part of Europe, coinciding with the first-order leveling network points, have been established. The geopotential values for these sites were determined with an accuracy not limiting the testing procedure. Tests have been carried out for models GEM-Tl, GEM-T3, JGM-l, JGM-2, JGM-3 and OSU91A.  相似文献   
73.
Qualitative methods are important to gain a deep understanding of complex problems and poorly researched areas. They can be particularly useful to help explain underlying conservation problems. However, the significance in choosing and justifying appropriate methodological frameworks in conservation studies should be given more attention to ensure data are collected and analysed appropriately. We explain when, why, and how qualitative methods should be used and explain sampling strategies in qualitative studies. To improve familiarity with qualitative methods among natural scientists, we recommend expanding training in social sciences and increasing collaboration with social scientists. Given the scale of human impacts on the environment, this type of nuanced analytical skill is critical for progressing biodiversity conservation efforts.  相似文献   
74.
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (\(H_\mathrm{d}/H_\mathrm{u}\)) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.  相似文献   
75.
This paper presents the results of an extensive numerical parametric study on seismic behavior of 2D homogenous hills subjected to vertically propagating incident SV waves. It is shown that the amplification potential of these hills is strongly influenced by the wavelength, by the shape ratio, by the shape of the hill and in a less order of importance, by the Poisson ratio of the media. The 2D topography effect could be ignored, only if the hill has a shape ratio of less than 0.1 or if it is subjected to incident waves with predominant dimensionless periods of greater than 13 times the shape ratio. In incidence of waves with wavelengths longer than the width of the hill, the amplification curve usually finds its maximum at the crest and decreases towards the base of the hill. Else, some de-amplification zones would occur along the hill. Among hills with similar shape ratios, those with intermediate cross section areas show intermediate seismic behavior, too. Estimated seismic site coefficients for the crest of a 2D rocky hill depend on its shape ratio and could reach even 1.7, which encourages one to classify it according to standard site categorization procedures as soil profile types SC or SD instead of the conventional SB type.  相似文献   
76.
Geochemical, mineralogical, and micromorphological characteristics of soils and their relevant parent rocks including loess, ignimbrite, sandstone and limestone were investigated to identify the soil-parent material uniformity and the weathering degree of soils in Golestan Province, northern Iran. Highly developed Calcixerolls and moderately developed Haploxerepts were formed on loess and limestone, respectively. In contrast, the soils formed on ignimbrite and sandstone were non-developed Entisols. Illite was the dominant clay mineral found in ignimbrite and sandstone in both the A horizon and parent material. In loess derived soils however, smectite was dominant especially in the Bt horizon compared to its parent material indicating partly to its pedogenic formation. In limestone, illite and vermiculite were dominant both in the A and C horizons. Ti/Zr ratio proved that the studied soils were closely related to their underlying parent materials geochemically. Chemical index of alteration (CIA), micromorphological index of soil development (MISECA), smectite/illite+chlorite ratio and magnetic susceptibility were applied to investigate the degree of soil development. Results showed that the most and the least developed soils were those formed on loess deposits and limestone, respectively. Application of the different geochemical and pedogenetic approaches was proved to be useful in identifying the relevance of soils to their underlying parent materials and also their degree of development.  相似文献   
77.
During 64 days (in June, July, and August 1967–1969), bottom currents have been measured by self-recordingRichardson current meters in the central Gulf of Manfredonia (Southern Adriatic Sea, Italy). The currents show mean velocities of 2–4 cm/sec and maximum velocities ranging from 10–14 cm/sec at 35–50 cm above the sea floor, and maximum velocities of 22 cm/sec at 250 cm above the sediment surface (see Table 1, Fig. 4). During the four measuring periods, NW- to NE-directed current vectors prevailed (Fig. 3): they can be explained by the assumption of a clockwise (anticyclonic) captive eddy or vortex in the Gulf, moving opposite to the constant, “summer-outgoing” Adriatic Gradient Current (Zore-Armanda 1968), which flows to the SE along the Italian coast (Fig. 1). The current directions are opposite to the prevailing wind directions, blowing during the summer mostly from the NW, N and NE; this might be explained by the activity of a northward compensation undercurrent, induced by those winds and possibly also by southeast-flowing surface (gradient) currents. The clockwise 360° rotation of current directions (velocity: 2–13 cm/sec) during one day (June 24/25, 1968) is explained by the influence of a spring tide with a tidal range of 35 cm (Fig. 6). These bottom currents, measured in summer, are only capable of redepositing the river-supplied, clay- to silt-size sediment material by suspension transport. During winter storms with wave action reaching down to a depth of 10 m (?) and swell from strong SE-winds with a longer fetch, it is supposed that current velocities are 3–5 times higher than in summer and sufficient to transport also fine sand. The characteristic distribution of total heavy minerals and of euhedral pyroxenes (Fig. 7 a, b) within the Gulf of Manfredonia indicates that the sediment supplied by the Apennine rivers (mainly River Ofanto) is being re-distributed to the NW and N by longshore drift and by nearshore currents belonging to a clockwise eddy system. This explanation could be verified by the direct current measurements.  相似文献   
78.
Long cast-in-place concrete bridges are often constructed in multiple frames separated by in-span hinges. The multi-frame system offers lower construction and maintenance costs, fewer adverse effects due to creep, post-tensioning, and thermal deformations as a few of its advantages. However, the seismic response of multi-frame bridges has been uncertain owing to the complexities of their discrete system. This study intends to improve the understanding of the seismic response of multi-frame bridge systems and evaluate the applicability of current design assumptions. Responses of multi-frame bridges and comparable single-frame bridges of the same length are compared. Seismic demands on multi-frame bridge columns, abutments, and in-span hinges were investigated through high-fidelity analytical simulations. Approximately 3400 nonlinear time history analyses of prototype bridges with realistic designs were performed using the OpenSees platform. Analysis of variance was implemented along with a factorial design to study the effect of several independent factors, including the number of frames, substructure system, unequal column heights, soil type, ground motion intensity, and capacity-to-demand ratio. It was observed for elastic dynamic analysis that a 90 % modal mass participation ratio is not adequate to accurately estimate dynamic responses. Seismic demands on columns in multi-frame bridges are typically smaller than those in comparable single-frame bridges. The multi-frame system is seismically more robust than the single-frame system, specifically for bridges spanning non-uniform valleys that include unequal column heights. To prevent longitudinal unseating at in-span hinges, it is critical to consider the interaction of transverse and longitudinal responses. The seismic damage to abutment backwalls and backfills in multi-frame bridges is expected to be extensive owing to small expansion joints.  相似文献   
79.
The Choghart magnetite-apatite deposit situated in the Bafq district, Central Iran, has been scrutinized for rare earth elements (REEs) by precise geochemical investigation. The Central Iran is a susceptible area of rare earth elements. One of the Choghart’s prominent points is the existence of hydrothermal zones which made prediction of REEs occurrence within the deposit possible. Choghart is placed within felsic volcanic tuffs, rhyolitic rocks, and volcanic sedimentary sections belonging to the lower Cambrian. Abundance and distribution pattern of REEs in Choghart iron deposits reveal a part of deposit formation and its mineralogical modifications. Petrography and mineralogy of the ore body demonstrated two main types of alterations (sodic and calcic) associated with iron ore mineralization in Choghart deposit. The main ore includes a large quantity of massive magnetite in the lower part of Choghart deposit. The minor mineralization involves apatite, pyrite, alkaline amphibole, especially actinolite and tremolite, calcite, talc, quart, monazite, and bastnasite. Geochemical sampling from north–northeast (N-NE) side of the mine denotes the presence of these elements in hydrothermal zones. Statistical populations of the area were categorized by fractal geometry into four main differentiations: host rock type (albitofyre), iron, metasomatose, phosphate zones, and a subset of the phosphate zone which is named high iron high phosphate type. REEs like lanthanum, neodymium, yttrium, and niobium constitute the most quantity of Choghart. Deposit characteristics demonstrate its similarity to Kiruna type. The significant feature of iron oxide-apatite deposits of Kiruna ore type is the existence of monazite inclusions within apatite. These inclusions were also observed within apatite type I and II of Choghart mineralization. Moreover, REEs geochemistry in Choghart deposit was identified by investigation on geochemical data analyses. The analysis represents negative Eu anomaly and further enrichment of light REEs compared to the heavy ones. Chondrite normalized REEs patterns are defined by negative anomalies of Eu, which is the main characteristic of Kiruna ore type. The results showed that REEs concentration in phosphate zone, as a high absorption of REEs, is much higher than metsomatose, albitofyre, and iron zones. REEs distribution in N-NE side of the mine indicated that the contact of iron ore with tailings in N-NW side of the mine leads REEs to be enriched nearly 1% , as well as that of NE with high contents of REEs 1.5% ), which is very significant.  相似文献   
80.
Gas and fluid venting at the Makran accretionary wedge off Pakistan   总被引:2,自引:1,他引:1  
The Makran accretionary complex shows a distinct bottom-simulating reflector, indicating a thick gas-hydrate-bearing horizon between the deformational front and about 1350 m water depth which seals off the upward flow of gas-charged fluids. A field of presently inactive mud diapirs with elevations up to 65 m was discovered in the abyssal plain seawards of the deformation front, suggesting that in the past conditions were favorable for periodic but localized vigorous mud diapirism. Regional destabilization of the gas hydrate leading to focused flow was observed where deep-penetrating, active faults reach the base of the gas-hydrate layer, as in a deeply incised submarine canyon (2100–2500 m water depth). At this location we discovered seeps of methane and H2S-rich fluids associated with chemoautotrophic vent faunas (e.g., Calyptogena sp.). Driven by the accretionary wedge dynamics, the landward part of the gas-hydrate layer below the Makran margin is being progressively uplifted. Due to reduced hydrostatic pressure and rising ocean bottom-water temperatures, gas hydrates are progressively destabilized and dissociated into hydrate water, methane and H2S. Sediment temperatures lie outside the methane stability field wherever water depth is less than 800 m. Above this depth, upward migration of fluids to the seafloor is unimpeded, thus explaining the abundance of randomly distributed gas seeps observed at water depths of 350 to 800 m. Received: 14 June 1999 / Revision accepted: 6 February 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号