首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   2篇
  国内免费   3篇
测绘学   8篇
大气科学   23篇
地球物理   40篇
地质学   87篇
海洋学   8篇
天文学   20篇
自然地理   3篇
  2022年   6篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   16篇
  2017年   13篇
  2016年   9篇
  2015年   9篇
  2014年   11篇
  2013年   10篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2001年   5篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1972年   2篇
排序方式: 共有189条查询结果,搜索用时 31 毫秒
111.
During the last six years, the National Geophysical Research Institute, Hyderabad has established a semi-permanent seismological network of 5 broadband seismographs and 10 accelerographs in the Kachchh seismic zone, Gujarat, with the prime objective to monitor the continued aftershock activity of the 2001 Mw7.7 Bhuj mainshock. The reliable and accurate broadband data for the Mw 7.6 (8 Oct., 2005) Kashmir earthquake and its aftershocks from this network, as well as from the Hyderabad Geoscope station, enabled us to estimate the group velocity dispersion characteristics and the one-dimensional regional shear-velocity structure of peninsular India. Firstly, we measure Rayleigh- and Love-wave group velocity dispersion curves in the range of 8 to 35 sec and invert these curves to estimate the crustal and upper mantle structure below the western part of peninsular India. Our best model suggests a two-layered crust: The upper crust is 13.8-km thick with a shear velocity (Vs) of 3.2 km/s; the corresponding values for the lower crust are 24.9 km and 3.7 km/sec. The shear velocity for the upper mantle is found to be 4.65 km/sec. Based on this structure, we perform a moment tensor (MT) inversion of the bandpass (0.05–0.02 Hz) filtered seismograms of the Kashmir earthquake. The best fit is obtained for a source located at a depth of 30 km, with a seismic moment, Mo, of 1.6 × 1027 dyne-cm, and a focal mechanism with strike 19.5°, dip 42°, and rake 167°. The long-period magnitude (MA ~ Mw) of this earthquake is estimated to be 7.31. An analysis of well-developed sPn and sSn regional crustal phases from the bandpassed (0.02–0.25 Hz) seismograms of this earthquake at four stations in Kachchh suggests a focal depth of 30.8 km.  相似文献   
112.
Delineation of the top sedimentary structure and its Qs vs. Qp relationship using the travel-time difference of direct S and converted Sp phase is key to understanding the seismic hazard of any sedimentary basin area. We constructed filtered displacement waveforms from local ETNA Episensor acceleration recordings as well as local velocity recordings of aftershocks of the 2001 Bhuj earthquake recorded by the Kachchh seismological network of the National Geophysical Research Institute (NGRI), Hyderabad, India during 2001–2004. Stations are within 15–70km of epicenters, and the resulting displacement waveforms are generally simple, displaying prominent P, Sp, and S wave pulses. Particle motion of P and S waves suggest near-vertical raypaths consistent with preliminary depth estimates. The direct S wave on the horizontal component is characterized by lower frequency content than the converted Sp phase on the vertical component. This difference in frequency content between S and Sp phases can be explained in terms of different attenuation effects for P and S waves in the unconsolidated sediments. The Sp phase is generated by S-to-P phase conversion at the base of Mesozoic sediments of the Kachchh basin. Travel-time inversion (VELEST) of 2565 P and 2380 S arrivals from 658 well located aftershocks recorded at 8–14 three-component local seismic stations led to 1 D velocity models indicated very slow sediments in the upper 0–2 km depth range (Vp: 2.92 km/s and Vs: 0.90 km/s) and an increasing trend of velocities with depth at 2–40 km depth. The estimated sediment thicknesses beneath 12 accelerograph and 6 seismograph sites from the estimated velocity model and the travel-time difference between S and converted Sp phases reaches a maximum of (1.534 ± 0.117) km beneath Bandri (near the location of 2001 Bhuj mainshock) and attains a minimum sediment thickness of (0.858 ± 0.104) km beneath Ramvav and Burudia. The spectral ratios between Sp and S from 159 three-component accelerograms have been used to study seismic wave attenuation in the Kachchh rift basin. The estimated Qs vs. Qp relations for 12 accelerograph sites vary from Qs = 0.184 Qp (at Chobari) to Qs = 0.505 Qp (at Dudhai). For stations Chobari, Chopdwa, Jahawarnagar, Vondh and Tapar, the spectral ratio slopes and hence the calculated Qs vs. Qp relations are effectively the same, and the correlation coefficients are quite high (0.91–0.93). Stations Adhoi, Manfara, New Dudhai, Dudhai and Sikara have similar Qs vs. Qp relationships to each other and also have high correlation coefficients (0.78–0.87). The spectral ratios for stations Anjar and Ramvav are small and poorly constrained, resulting in less reliable Qs vs. Qp relations. This could be due to noisy data, fewer available waveforms, or scattering due to velocity heterogeneities and/or interface irregularities.  相似文献   
113.
Geothermal power seems to be a potential source of green energy in India. But these renewable energy resources are still ignored in India even after having a lot of potential sources as seen in more than 300 hot springs scattered throughout different geothermal areas of the country. Many of them could be utilized for power generation using the earth’s internal heat. More hours are needed to explore these geothermal areas using geochemical, geophysical techniques, and statistical analysis to qualitatively estimate power harnessing capabilities and sustainability of the areas for generation of geothermal power. In the present paper, attention has been focused to investigate Bakreswar geothermal field of India by continuous (24*7) and online monitoring of terrestrial gases such as He and radioactive gases (222Rn) in hot spring emanations of the geothermal area for more than 5 years along with discrete measurement of some other geochemical and geophysical parameters. The discrete measures imply that the seven hot spring vents at the study area are linked to the aquifer through different ways covering non-uniform rock assemblies and ascertain the presence of high amount of radioactive minerals at the underneath terrains. Stable activities with a high-out flux of 222Rn and He for a prolonged time period is expected within the reservoir present at the study area as consequence of analysis of the temporal variations and statistical measures of the continuous data sets. Seasonal variation of time series data also recommends that the high amount of radioactive sources present at the crust of the reservoir is able to produce enough quantity of heat irrespective of meteorological effects. The investigation on the power spectra interferes that the geothermal system is still in quite active phase on the influence of tectonic activities. Therefore, the geothermal reservoir present at the Bakreswar geothermal area may be utilized as a constant and continuous heat source for a long time period to run a geothermal power plant.  相似文献   
114.
Das  Tapas  Jana  Antu  Mandal  Biswajit  Sutradhar  Arindam 《GeoJournal》2021,87(4):765-795

Urbanization produces substantial land use changes by causing the construction of different urban infrastructures in the city region for habitation, transportation, industry, and other reasons. As a result, it has a significant impact on Land Surface Temperature (LST) by disrupting the surface energy balance. The objective of this paper is to assess the impact of land-use/land-cover (LU/LC) dynamics on urban land surface temperature (LST) of Bhubaneswar City in Eastern India during 30 years (1991–2021) using Landsat data (TM, ETM + , and OLI/TIRS) and machine learning algorithms (MLA). The finding reveals that the mean LST over the entire study domain grows significantly between 1991 and, 2021due to urbanization (β coefficient 0.400, 0.195, 0.07, and 0.06 in 1991, 2001, 2011, and 2021 respectively) and loss of green space (β coefficient − 0.295, − 0.025, − 0.125 and − 0.065 in 1991, 2001, 2011 and 2021 respectively). The highest class recorded for agricultural land (49.60 km2, accounting for 33.94% of the total land area) was in 1991 followed by vegetation (41.27 km2, 28.19% of the total land area), and built-up land (27.59 km2, 18.84% of the total land area). The sharp decline of vegetation cover will continue until 2021 due to increasing built-up areas (r = − 0.531, − 0.329, − 0.538, and − 0.063 in the 1991, 2001, 2011 and 2021 respectively). Built-up land (62.60 km2, accounting for 42.76% of the total land area, an increase of 35.01 km2 from 1991) as the highest class followed by water bodies (21.57%, 32.60 km2 of the land area), and agricultural land (31.57 km2, 21.57% of the land area) in 2021. Remote sensing techniques proved to be an important tool to urban planners and policymakers to take adequate steps to promote sustainable development and minimize urbanization influence on LST. Urban green space (UGS) can help improve the overall liveability and environmental sustainability of Bhubaneswar city.

  相似文献   
115.

Poverty is the most important metric for determining the nature and sense of wellbeing in a given area. Most economists consider poverty to be an economic criterion for assessing many aspects of human development as well as overall social development; yet, society is multi-faceted in its many forms. To address this pressing societal issue, the current study used the Multidimensional poverty index (MPI). To analyse urban poverty among slum communities, the researchers used the Global MPI of the Oxford Poverty and Human Development Initiative and UNDP (following Alkire and Foster) techniques. Researchers attempted to create a Multidimensional poverty index (MPI) for impoverished households in Purulia's designated slums in this study. In the second phase, the multidimensional poverty of Purulia's urban poor households was assessed based on (a) location, (b) social groupings, and (c) length of stay. Finally, researchers have attempted to identify the factors that contribute to multidimensional poverty. Two indicators, the Head Count Ratio (H) and Intensity of Poverty, have been offered to better explain the nature of MPI (A). Based on slum population density and areal density, eight urban slum areas with 320 households has been taken from 8 selected slums based on Yamane’s methodology from Purulia Municipality's wards. A structured questionnaire, an oral history interview, and a focus group discussion were used as primary data sources, with secondary data acquired from several officially published sources. The study displays a decomposed multidimensional poverty picture in terms of overall condition, socioeconomic groups, and household age, with a quantitative methodology that is transparent. When the locations have been considered, a qualitative approach has been used to determine that the slums closest to the railway track are the most multidimensionally disadvantaged of the eight slums. Furthermore, the schedule caste population has been found to be more deprived across many socioeconomic groups, with Scheduled tribe (ST) households being the most deprived in terms of health on one hand (applied quantitative methodology) and multi-nominal regression (applied qualitative methodology) indicating a mix mode approach. This form of analysis, which combines quantitative and qualitative approaches, can aid stakeholders and policymakers in developing specific poverty-reduction policies at the regional level.

  相似文献   
116.
Kolkata, capital of West Bengal, India, presently congested with moderate to high rise buildings, has undergone low to moderate damages due to past earthquakes. The city is situated on the world’s largest delta island with soft thick alluvial soil layer. In this study, an attempt has been made to study ground response due to a number of past earthquakes, 1897 Shillong earthquake, 1964 Calcutta earthquake and 2011 Sikkim earthquake, for the purpose of preliminary microzonation of the Kolkata city. For this, synthetic ground motions have been generated at bedrock level by stochastic method. By using 1D wave propagation technique, the synthetic ground motion has been computed at surface level for 144 borehole locations in the city. Contours of PGA, PGV and PGD parameters in the city have been drawn for these three earthquakes. Response spectra for these three earthquakes have also been computed and an optimum response spectrum has been determined. A good correlation has been obtained with predicted ground motion at surface level of the city with the reported intensity and damages occurred in buildings of Kolkata during past earthquakes. The scenario of simulated ground motion for the past three earthquakes depicts that Kolkata city is very much prone to damages even due to moderate far and near source earthquakes.  相似文献   
117.
Kumar  Manish  Yallanki  V. S.  Biswas  Koushik  Mandal  Prantik 《Natural Hazards》2015,75(2):1577-1598
Natural Hazards - Scaled energy, apparent stress, seismic moments, stress drops and corner frequencies are measured through the Levenberg–Marquardt nonlinear inversion modeling of S-wave...  相似文献   
118.
This study aims to investigate the control of arsenic distribution by biogeochemical processes in the Indian Sundarban mangrove ecosystem and the importance of this ecosystem as an arsenic source for surrounding coastal water. The As(V)/As(III) ratio was found to be significantly lower in both surface and pore waters compared to sea water, which could be attributed to biogeochemical interconversion of these arsenic forms. The biological uptake of arsenic due to primary and benthic production occurs during the post-monsoon season, and is followed by the release of arsenic during the biochemical degradation and dissolution of plankton in the pre-monsoon season. These results suggest that arsenic is immobilized during incorporation into the arsenic-bearing initial phase, and unlikely to be released into pore water until the complete microbial degradation of arsenic-bearing organic compounds.  相似文献   
119.
Pramanik  Saikat  Sil  Sourav  Mandal  Samiran  Dey  Dipanjan  Shee  Abhijit 《Ocean Dynamics》2019,69(11):1253-1271

Role of equatorial forcing on the thermocline variability in the Bay of Bengal (BoB) during positive and negative phases of the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) was investigated using the Regional Ocean Modeling System (ROMS) simulations during 1988 to 2015. Two numerical experiments were carried out for (i) the Indian Ocean Model (IOM) with interannual open boundary conditions and (ii) the BoB Model (BoBM) with climatological boundary conditions. The first mode of Sea Surface Height Anomalies (SSHA) variability showed a west-east dipole nature in both IOM and altimetry observations around 11°N, which was absent in the BoBM. The vertical section of temperature along the same latitude showed a sharp subsurface temperature dipole with a core at ~ 100 m depth. The positive (negative) subsurface temperature anomalies were observed over the whole northeastern BoB during NIOD (PIOD) and LN (EN) composites due to stronger (weaker) second downwelling Kelvin Waves. During the negative phases of IOD and ENSO, the cyclonic eddy on the southwestern BoB strengthened due to intensified southward coastal current along the western BoB and local wind stress. The subsurface temperature dipole was at its peak during October–December (OND) with 1-month lag from IOD and was evident from the Argo observations and other reanalysis datasets as well. A new BoB dipole index (BDI) was defined as the normalized difference of 100-m temperature anomaly and found to be closely related to the frequency of cyclones and the surface chlorophyll-a concentration in the BoB.

  相似文献   
120.
The scattering of plane surface waves by bottom undulations in an ice-covered ocean modelled as a two-layer fluid consisting of a layer of fresh water of lesser density above a deep layer of salt water, is investigated here by using a simplified perturbation analysis. In such a two-layer fluid there exist waves of two different modes, one with higher mode propagates along the interface and the other with lower mode propagates along the ice-cover. An incident wave of a particular mode gets reflected and transmitted by the bottom undulations into waves of both the modes so that transfer of wave energy from one mode to another takes place. The first-order reflection and transmission coefficients of two different modes are obtained due to incident waves of again two different modes by employing Fourier transform technique in the mathematical analysis. For sinusoidal bottom topography these coefficients are depicted graphically against the wavenumber. These figures show how the transfer of energy from one mode to another takes place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号