首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   18篇
  国内免费   1篇
测绘学   5篇
大气科学   4篇
地球物理   41篇
地质学   79篇
海洋学   16篇
天文学   27篇
自然地理   10篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   10篇
  2014年   13篇
  2013年   18篇
  2012年   15篇
  2011年   7篇
  2010年   11篇
  2009年   8篇
  2008年   15篇
  2007年   6篇
  2006年   2篇
  2005年   8篇
  2004年   7篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有182条查询结果,搜索用时 46 毫秒
41.
Pointed ROSAT PSPC exposures of 9277 and 6992 sec, directed toward the nearby, single, cool, magnetic white dwarfs GR 290 and EG 250 yielded no counts significantly above the expected background rate. The corresponding flux limits (for an assumed source temperature of l keV) are 1.0 and 1.7 × 10−14erg cm−2 s−1, within the 0.1–2.5 keV bandpass of the instrument (99% confidence limits). This is more than an order of magnitude below the tentative detection level (for GR 290) and limits (for four other similar stars) obtained from archival Einstein data in 1991. The corresponding limits on coronal electron density are comparable with those implied if cyclotron emission is not responsible for any of the features observed in the optical spectra of magnetic white dwarfs. X-ray data currently provide no evidence for the existence of coronae around these stars. A final long observation (25,000 sec of GD 356) is scheduled for later this year on ROSAT, along with coordinated EUVE observations.  相似文献   
42.
The helicity, electromotive force and α-effect produced in a homogeneous, rapidly rotating, electrically conducting fluid by an isolated source of buoyancy at small Elsasser number are calculated, visualized and analyzed. Due to physical symmetries of the system, the integrals of helicity and electromotive force over all space are zero. However, each has a significant non-zero value when integrated over the cross section of the Taylor column. The local α-effect is found to be significantly anisotropic; it is strongest when the applied magnetic field is toroidal and the resulting EMF is parallel to the applied field.  相似文献   
43.
The Chile Triple Junction is a natural laboratory to study the interactions between magmatism and tectonics during the subduction of an active spreading ridge beneath a continent. The MLBA plateau (Meseta del Lago Buenos Aires) is one of the Neogene alkali basaltic plateaus located in the back-arc region of the Andean Cordillera at the latitude of the current Chile Triple Junction. The genesis of MLBA can be related with successive opening of slabs windows beneath Patagonia: within the subducting Nazca Plate itself and between the Nazca and Antarctic plates. Detailed 40Ar/39Ar dating and geochemical analysis of bimodal magmatism from the western flank of the MLBA show major changes in the back-arc magmatism which occurred between 14.5 Ma and 12.5 Ma with the transition from calc-alkaline lavas (Cerro Plomo) to alkaline lavas (MLBA) in relation with slab window opening. In a second step, at 4–3 Ma, alkaline felsic intrusions were emplaced in the western flank of the MLBA coevally with the MLBA basalts with which they are genetically related. These late OIB-like alkaline to transitional basalts were generated by partial melting of the subslab asthenosphere of the subducting Nazca plate during the opening of the South Chile spreading ridge-related slab window. These basalts differentiated with small amounts of assimilation in shallow magma chambers emplaced along transtensional to extensional zones. The close association of bimodal magmatism with extensional tectonic features in the western MLBA is a strong support to the model of Patagonian collapse event proposed to have taken place between 5 and 3 Ma as a consequence of the presence of the asthenospheric window (SCR-1 segment of South Chile Ridge) below the MLBA area.  相似文献   
44.
The volcano-stratigraphic and geochronologic data presented in this work show that the Tenerife central zone has been occupied during the last 3 Ma by shield or central composite volcanoes which reached more than 3000 m in height. The last volcanic system, the presently active Teide-Pico Viejo Complex began to form approximately 150 ka ago. The first Cañadas Edifice (CE) volcanic activity took place between about 3.5 Ma and 2.7 Ma. The CE-I is formed mainly by basalts, trachybasalts and trachytes. The remains of this phase outcrop in the Cañadas Wall (CW) sectors of La Angostura (3.5–3.0 Ma and 3.0–2.7 Ma), Boca de Tauce (3.0 Ma), and in the bottom of some external radial ravines (3.5 Ma). The position of its main emission center was located in the central part of the CC. The volcano could have reached 3000 m in height. This edifice underwent a partial destruction by failure and flank collapse, forming debris-avalanches during the 2.6–2.3 Ma period. The debris-avalanche deposits can be seen in the most distal zones in the N flank of the CE-I (Tigaiga Breccia). A new volcanic phase, whose deposits overlie the remains of CE-I and the former debris-avalanche deposits, constituted a new volcanic edifice, the CE-II. The dyke directions analysis and the morphological reconstruction suggest that the CE-II center was situated somewhat westward of the CE-I, reaching some 3200 m in height. The CE-II formations are well exposed on the CW, especially at the El Cedro (2.3–2.00 Ma) sector. They are also frequent in the S flank of the edifice (2.25–1.89 Ma) in Tejina (2.5–1.87 Ma) as well as in the Tigaiga massif to the N (2.23 Ma). During the last periods of activity of CE-II, important explosive eruptions took place forming ignimbrites, pyroclastic flows, and fall deposits of trachytic composition. Their ages vary between 1.5 and 1.6 Ma (Adeje ignimbrites, to the W). In the CW, the Upper Ucanca phonolitic Unit (1.4 Ma) could be the last main episode of the CE-II. Afterwards, the Cañadas III phase began. It is well represented in the CW sectors of Tigaiga (1.1 Ma–0.27 Ma), Las Pilas (1.03 Ma–0.78 Ma), Diego Hernández (0.54 Ma–0.17 Ma) and Guajara (1.1 Ma–0.7 Ma). The materials of this edifice are also found in the SE flank. These materials are trachybasaltic lava-flows and abundant phonolitic lava and pyroclastic flows (0.6 Ma–0.5 Ma) associated with abundant plinian falls. The CE-III was essentially built between 0.9 and 0.2 Ma, a period when the volcanic activity was also intense in the ‘Dorsal Edifice' situated in the easterly wing of Tenerife. The so called ‘valleys' of La Orotava and Güimar, transversals to the ridge axis, also formed during this period. In the central part of Tenerife, the CE-III completed its evolution with an explosive deposit resting on the top of the CE, for which ages from 0.173 to 0.13 Ma have been obtained. The CC age must be younger due to the fact that the present caldera scarp cuts these deposits. On the controversial origin of the CC (central vertical collapse vs. repeated flank failure and lateral collapse of mature volcanic edifices), the data discussed in this paper favor the second hypothesis. Clearly several debris-avalanche type events exist in the history of the volcano but most of the deposits are now under the sea. The caldera wall should represent the proximal scarps of the large slides whose intermediate scarps are covered by the more recent Teide-Pico Viejo volcanoes.  相似文献   
45.
This paper evaluates the suitability of readily available elevation data derived from recent sensors – the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM) – for glaciological applications. The study area is Nevado Coropuna (6426 m), situated in Cordillera Ampato of Southern Peru. The glaciated area was 82.6 km2 in 1962, based on aerial photography. We estimate the glacier area to be ca. 60.8 km2 in 2000, based on analysis of the ASTER L1B scene.We used two 1:50,000 topographic maps constructed from 1955 aerial photography to create a digital elevation model with 30 m resolution, which we used as a reference dataset. Of the various interpolation techniques examined, the TOPOGRID algorithm was found to be superior to other techniques, and yielded a DEM with a vertical accuracy of ± 14.7 m. The 1955 DEM was compared to the SRTM DEM (2000) and ASTER DEM (2001) on a cell-by-cell basis. Steps included: validating the DEM's against field GPS survey points on rock areas; visualization techniques such as shaded relief and contour maps; quantifying errors (bias) in each DEM; correlating vertical differences between various DEM's with topographic characteristics (elevation, slope and aspect) and subtracting DEM elevations on a cell-by-cell basis.The RMS error of the SRTM DEM with respect to GPS points on non-glaciated areas was 23 m. The ASTER DEM had a RMS error of 61 m with respect to GPS points and displayed 200–300 m horizontal offsets and elevation ‘spikes’ on the glaciated area when compared to the DEM from topographic data.Cell-by-cell comparison of SRTM and ASTER-derived elevations with topographic data showed ablation at the toes of the glaciers (− 25 m to − 75 m surface lowering) and an apparent thickening at the summits. The mean altitude difference on glaciated area (SRTM minus topographic DEM) was − 5 m, pointing towards a lowering of the glacier surface during the period 1955–2000. Spurious values on the glacier surface in the ASTER DEM affected the analysis and thus prevented us from quantifying the glacier changes based on the ASTER data.  相似文献   
46.
In this study, we propose a multiple hypotheses approach to improve interpretations of limited remotely sensed datasets, such as sparsely exposed outcrops, subsurface datasets, or planetary objects using semi-quantitative scoring and ranking of observable features. This method is demonstrated using an outcrop example from the Broken Beds of the Upper Jurassic–Lower Cretaceous Purbeck Limestone Group exposed along Britain's Jurassic Coast. Four published hypotheses regarding their origin are refined, represented in matrix form, scored and ranked based on carefully selected outcrop features. Semi-quantitative scoring utilises knowledge of likely processes governing the occurrence of a range of features, some of which might be ignored or down-played to favour a single hypothesis. Furthermore, by integrating expertise from different sub-disciplines (e.g. basin analysis, sedimentology, diagenesis), we also consider the combined evidence of multiple features. This new method results in an interpretation that favours a multi-process origin for the Broken Beds due to evaporite dissolution, overpressure release and tectonic folding, with identified uncertainty, all useful to guide further data collection.  相似文献   
47.
The core structures of dislocations in diopside have been calculated within the Peierls model, which assumes a planar core. 1/2<110> dislocations can dissociate into two collinear partial dislocations. We show that [001] glide is very difficult in (010) and that a non-collinear dissociation of [001](100) (modelled within a Peierls–Nabarro–Galerkin approach) makes glide equally easy in (100) and {110}. A widely spread core structure corresponding to a low lattice friction has been found for [100](010) and [010](100) dislocations which is not supported by mechanical data and, together with TEM observations, suggests that another, probably non-planar core structure is possible for these dislocations.  相似文献   
48.
A 40Ar/39Ar geochronological study was performed on amphibole and biotite from some representative units of distinct tectonic domains of the southeastern Guiana Shield, north of the Amazonian Craton, the Amapá Block and the Carecuru Domain. In the Amapá Block, an Archean continental block involved in the Transamazonian orogenesis (2.26–1.95 Ga), the investigated minerals, from rocks of the Archean high-grade basement assemblage, give only Paleoproterozoic ages, indicating their complete resetting during the Transamazonian orogenic event. Amphibole ages vary from 2087 ± 3 to 2047 ± 20 Ma, and biotite ages spread mainly between 2079 ± 18 and 2033 ± 13 Ma. In the Carecuru Domain, in which the geodynamic evolution is related to Paleoproterozoic magmatic arc setting during the Transamazonian event, calc-alkaline granitoids yield amphibole age of 2074 ± 17 Ma, and biotite ages of 1928 ± 19 Ma and 1833 ± 13 Ma.These data reinforce the importance of the Transamazonian orogenic cycle in the investigated area, and indicate that the rocks were not significantly affected by post-Transamazonian events. When coupled with available U–Th–Pb monazite and Pb–Pb zircon geochronological records and petro-structural observations, the new 40Ar/39Ar data delineate contrasting cooling and exhumation histories for the tectonic domains. In the Amapá Block, the data suggest nearly vertical Tt paths that reflect fast cooling rates, which indicate tectonically controlled exhumation, related to collisional stages of the Transamazonian event, between 2.10 and 2.08 Ga. Conversely, in the Carecuru Domain, low cooling rates suggest that the arc-related granitoids underwent slow and monotonous cooling since their emplacement until reaching the biotite isotopic closure temperature.  相似文献   
49.
On the basis of sedimentological analysis of two cores taken at Chatillon, Lake Le Bourget (northern French Pre‐Alps), and well dated by radiocarbon dates in addition to tree ring dates obtained from an archaeological layer, this paper presents a high‐resolution lake‐level record for the period 4500–3500 cal. a BP. The collected data provide evidence of a complex palaeohydrological (climatic) oscillation spanning the ca. 4300–3850 cal. BP time interval, with major lake‐level maxima at ca. 4200 and 4050–3850 cal. a BP separated by a lowering episode around 4100 cal. a BP. The lake‐level highstands observed at Chatillon between 4300 and 3850 cal. BP appear to be synchronous with (i) a major flooding period recorded in deep cores from the large lakes Le Bourget and Bodensee, and (ii) glacier advance and tree line decline in the Alps. Such wetter and cooler climatic conditions in west‐central Europe around 4000 cal. a BP may have been a nonlinear response to decrease and seasonal changes in insolation. They may also provide a possible explanation for the general abandonment of prehistoric lake dwellings north of the Alps between 4360 and 3750 cal. a BP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号