首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
大气科学   1篇
地球物理   10篇
地质学   7篇
海洋学   4篇
综合类   1篇
自然地理   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  1986年   1篇
  1981年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
21.
The relationship between the geometrical structure of a canopy layer and the bulk transfer coefficient was investigated using a numerical canopy model. The following results were obtained:
  1. The bulk transfer coefficients for momentum and heat, C M and C H , change with non-dimensional canopy density C * each has a maximum.
  2. The value of C M is always larger than the value of C H for a canopy with c m > c h , c m and c h being the drag coefficient and the heat transfer coefficient of an individual canopy element, respectively.
  3. The value of C * at which C H has its maximum value is larger than the value of C * at which C M has its maximum. Therefore, the reciprocal of the sublayer Stanton number b h ?1 ranges between 50 and 65 for C * around 0.1 while it ranges between 0 and 30 for C * < 10?2 and C * > 2 (when c m = 0.5).
  4. The value of B H ?1 in the present study is consistent with most available observations, except for canopies of medium density (when C * is around 0.1) for which no observational value has been obtained.
  相似文献   
22.
Landslide hazard mapping is a fundamental tool for disaster management activities in mountainous terrains. The main purpose of this study is to evaluate the predictive power of weights-of-evidence modelling in landslide hazard assessment in the Lesser Himalaya of Nepal. The modelling was performed within a geographical information system (GIS), to derive a landslide hazard map of the south-western marginal hills of the Kathmandu Valley. Thematic maps representing various factors (e.g., slope, aspect, relief, flow accumulation, distance to drainage, soil depth, engineering soil type, landuse, geology, distance to road and extreme one-day rainfall) that are related to landslide activity were generated, using field data and GIS techniques, at a scale of 1:10,000. Landslide events of the 1970s, 1980s, and 1990s were used to assess the Bayesian probability of landslides in each cell unit with respect to the causative factors. To assess the accuracy of the resulting landslide hazard map, it was correlated with a map of landslides triggered by the 2002 extreme rainfall events. The accuracy of the map was evaluated by various techniques, including the area under the curve, success rate and prediction rate. The resulting landslide hazard value calculated from the old landslide data showed a prediction accuracy of > 80%. The analysis suggests that geomorphological and human-related factors play significant roles in determining the probability value, while geological factors play only minor roles. Finally, after the rectification of the landslide hazard values of the new landslides using those of the old landslides, a landslide hazard map with > 88% prediction accuracy was prepared. The methodology appears to have extensive applicability to the Lesser Himalaya of Nepal, with the limitation that the model's performance is contingent on the availability of data from past landslides.  相似文献   
23.
This study reconstructed environmental changes to the seafloor associated with reclamation in Mishou Bay, Bungo Channel, Japan, based on measurements of sediment grain size, organic matter and sulfur contents of surface sediments and data from sediment cores. Grain size within sediment cores from the middle of Mishou Bay decreased from the beginning of the 1800s to the 1900s. In contrast, a grain size profile from the river mouth shows a gradual increase in grain size up through the sediment core. These changes in grain size indicate a decrease in tidal current velocity within the middle of the bay and that the delta system is gradually prograding from the river mouth. Records of organic matter composition and sulfur contents indicate that the effect of the river on seafloor sedimentation became stronger during the nineteenth century. These changes are related to reclamation during the late 1700s and 1800s. The decrease in sea area resulting from reclamation probably led to a decrease in tidal prism and current velocity. It is likely that the increasing effect of river water on sedimentation is associated with reclamation-related progradation of the river delta system.  相似文献   
24.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号