首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   621篇
  免费   23篇
  国内免费   9篇
测绘学   7篇
大气科学   36篇
地球物理   142篇
地质学   191篇
海洋学   160篇
天文学   74篇
综合类   12篇
自然地理   31篇
  2024年   2篇
  2022年   4篇
  2021年   15篇
  2020年   17篇
  2019年   13篇
  2018年   17篇
  2017年   23篇
  2016年   15篇
  2015年   16篇
  2014年   23篇
  2013年   36篇
  2012年   23篇
  2011年   32篇
  2010年   20篇
  2009年   26篇
  2008年   35篇
  2007年   27篇
  2006年   23篇
  2005年   38篇
  2004年   19篇
  2003年   20篇
  2002年   19篇
  2001年   10篇
  2000年   22篇
  1999年   14篇
  1998年   9篇
  1997年   6篇
  1996年   7篇
  1995年   9篇
  1994年   8篇
  1993年   8篇
  1992年   4篇
  1991年   6篇
  1990年   6篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1983年   9篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有653条查询结果,搜索用时 15 毫秒
161.
A Box Model of Glacial-Interglacial Variability in the Japan Sea   总被引:2,自引:0,他引:2  
The Japan Sea has experienced drastic changes in the last 60 ka: the surface water was colder than the present value by five degrees and extremely freshened (24 ppt) in the last glacial maximum (15 ka), and then it contained Oyashio water for a few thousand years. It is an open question whether the inflow-outflow pattern was entirely reversed, opposite to the present exchange with an inflow through Tsushima Strait and an outflow through Tsugaru Strait. A box model is employed with two boxes representing the northern and the southern half domains in the upper (300-m-thick) layer. The model is driven by atmospheric forcing and inflow through Tsushima Strait and/or Tsugaru Strait. Here, the net transport through Tsushima to Tsugaru is given in the model. A baroclinic component is added to the net transport through each strait. It is the baroclinic components that allow the upper and the lower portions to flow to the opposite directions in the straits, and hence a reversal flow becomes possible against the net transport, under the condition of an extremely freshened Japan Sea. The fresh surface layer in 1814 ka is attributable to a near-shutoff of the inflow due to the low sea level. Shortly after the near-shutoff, the baroclinic transport through Tsugaru Strait yields intrusion of the Oyashio water into the Japan Sea. Thus, it is implied that Oyashio water existed in the Japan Sea a few thousand years after the reopening of Tsugaru Strait, even though the net transport was one-way, similar to the present state.  相似文献   
162.
A mesoscale iron-fertilization experiment was carried out in the western subarctic Pacific during summer 2001. The iron-patch was traced for 14 days after the fertilization, and the abundance and behavior of mesozooplankton were compared with those outside of the patch. The phytoplankton biomass in the patch rapidly increased to over 15 times the initial level by the later half of the observation period, and was composed of large-sized (>10 mm), centric diatoms. Dominant zooplankton species in the upper 200-m depth were large copepods: Neocalanus plumchrus, Neocalanus cristatus, Eucalanus bungii and Metridia pacifica. Mesozoplankton biomass as well as species composition did not change significantly in the patch over the observation period. Furthermore, no changes of vertical distribution or diel vertical migration were observed for any species or stages of mesozooplankton throughout the observation period. However, the abundance of the first copepodite stages of N. plumchrus and E. bungii increased several fold in the patch after the diatom bloom formation compared to the densities outside the patch. The increases of both species are considered to be due to lowered mortality during the egg and nauplius stages. Spawning of N. plumchrus takes place at depth using lipid storage, while spawning of E. bungii takes place in the surface layer supported by grazing. These facts suggest that the relative importance of nauplii in the diets of the large copepods was decreased in the patch by the diatom bloom. Gut-pigment contents of dominant copepods in the patch increased 4–18 times, and the maximum values were observed during the bloom peak. However, the grazing impact on phytoplankton was low throughout the experiment, especially during the bloom period (<6% of the primary production).  相似文献   
163.
Grazing experiments and production estimation based on life-history analysis of Neocalanus copepods (N. cristatus, N. plumchrus and N. flemingeri) were carried out in the Oyashio region to understand the carbon flows associated with the interzonal migrating copepods. These copepods, and also Eucalanus bungii, fed on nano- and micro-sized organisms non-selectively throughout the season. However, diatoms were the dominant food resource until May and organisms, such as ciliates were the major resource after May. Daily growth rate was estimated from the Ikeda–Motoda, Huntley–Lopez and Hirst–Sheader models. Since the growth rates were considered to be overestimates for the Huntley–Lopez model and underestimates for the other two models, we applied the weight-specific growth rates previously reported for these species in the Bering Shelf. Surface biomass of Neocalanus increased rapidly in June during the appearance of C5, and a successive increase of overwintering stock was evident in the deeper layer. The deep biomass decreased gradually from September to May during the dormant and reproduction period. N. cristatus has the largest annual mean biomass (2.3 gC m−2), followed by N. plumchrus (1.1) and N. flemingeri (0.4). Daily production rate of Neocalanus varied from 0.4 to 363.4 mgC m−2 day−1, to which N. cristatus was the largest contributor. Annual production was estimated as 11.5 gC m−2 year−1 for N. cristatus, 5.7 for N. plumchrus and 2.1 for N. flemingeri, yielding annual P/B ratio of 5 for each species. The annual production of Neocalanus accounted for 13.2% of the primary production in the Oyashio region. Their fecal pellets were estimated to account for 14.9% (0.7 gC m−2 year−1) of sinking flux of organic carbon at 1000-m depth. Moreover, their export flux by ontogenetic vertical migration, which is not measured by sediment trap observations, is estimated to be 91.5% (4.3 gC m−2 year−1) of carbon flux of sinking particles at 1000-m depth. These results suggest the important role of interzonal migrating copepods in the export flux of carbon.  相似文献   
164.
It is known that there is a front-like structure at the mixed layer depth (MLD) distribution in the subtropical gyre, which is called the MLD front, and is associated with the formation region of mode water. In the present article, the generation mechanism of the MLD front is studied using an idealized ocean general circulation model with no seasonal forcing. First, it is shown that the MLD front occurs along a curve where u g ·∇T s = 0 is satisfied (u g is the upper ocean geostrophic velocity vector, T s is the sea surface temperature and ∇ is the horizontal gradient operator). In other words, the front is the boundary between the subduction region (u g ·∇T s > 0) and the region where subduction does not occur (u g ·∇T s < 0). Second, we have investigated subduction of low potential vorticity water at the MLD front, which has been pointed out by past studies. Since u g ·∇T s = 0 at the MLD front, the water particles do not cross the outcrop at the MLD front. The water that is subducted at the MLD front has come from the deep mixed layer region where the sea surface temperature is higher than that at the MLD front. The temperature of the water in the deep mixed layer region decreases as it is advected eastward, attains its minimum at the MLD front where u g ·∇T s = 0, and then subducts under the warmer surface layer. Since the deep mixed layer water subducts beneath a thin stratified surface layer, maintaining its thickness, the mixed layer depth changes abruptly at the subduction location.  相似文献   
165.
The proper motion in galactic latitude of O-B stars enables us to detect the kinematic behaviour of an optical counterpart of the large-scale warp of the HI gas layer in our Galaxy. A selected set of the proper motions of about 350 O-B stars within 3kpc from the sun (R0=8.5kpc) is analyzed on the proper motion systems of N30, FK4, and FK5. A remarkable differece in the kinematic behaviour of the warp appears between the old systems (N30 and FK4) and FK5-system. On the old systems, the O-B stars in the belt 8.5kpcR<9.5kpc exhibit a systematic z-motion upward from the galactic plane forl180° and downward forl>180° with the mean proper motions of about ±0".4/century, respectively. On the other hand, the results on the FK5-system show no meaningful systematic z-motion, even though the O-B star layer exterior to the solar circle is inclined (3°) with respect to the galactic plane. These findings can neither be inferred from the model of the oblique material flow nor from the concepts of the precessional stellar rings and of the bending oscillation of a stellar disk. The remarkable difference in the kinematic behaviour of the warp, appearing between the old and new systems, is caused mainly by the conversion of the proper motions on the old systems into those on the J2000.0 frame. The conversion near the galactic plane is given by µb(FK4(J2000.0))–µb(FK4)–0.50 sinl/century. The implication of this relation is discussed in connection with the warping motion of stars detected here.  相似文献   
166.
In drylands, water deficit is the primary factor limiting plant growth. In the present study, surface energy balance and plant growth (above‐ground and below‐ground biomass) were measured continuously during the 2002 growing season in semiarid grassland in the northern part of Kazakhstan, Central Asia. Although there was above normal total rainfall during the 2002 growing season (May–November; 244 mm over 183 days), there was a dry period during July and August. Evaporative water was effectively supplied by precipitation and surface soil moisture during the wet season (May and June), during which time above‐ground biomass increased. During the early stages of the dry period, mature plants were likely to tap deeper sources of soil moisture, representing stored snowmelt water. As the soil moisture content decreased during the summer dry period due to the high levels of evapotranspiration and lack of precipitation, the evaporative fraction and above‐ground biomass rapidly decreased, whereas the below‐ground biomass increased. These results suggest that in summer, soil moisture acts to store water, and that soil moisture is essential for plant growth as a direct source of water during the dry period in natural grasslands in the Kazakhstan steppe. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
167.
168.
River runoff from the four largest Siberian river basins (the Ob, Yenisei, Lena, and Kolyma) considerably contributes to freshwater flux into the Arctic Ocean from the Eurasian continent. However, the effects of variation in snow cover fraction on the ecohydrological variations in these basins are not well understood. In this study, we analysed the spatiotemporal variability of the maximum snow cover fraction (SCFmax) in the four Siberian river basins. We compared the SCFmax from 2000 to 2016 with data in terms of monthly temperature and precipitation, night-time surface temperatures, the terrestrial water storage anomaly (TWSA), the normalised difference vegetation index (NDVI), and river runoff. Our results exhibit a decreasing trend in the April SCFmax values since 2000, largely in response to warming air temperatures in April. We identified snowmelt water as the dominant control on the observed increase in the runoff contribution in May across all four Siberian river basins. In addition, we detected that the interannual river runoff was predominantly controlled by interannual variations in the TWSA. The NDVI in June was strongly controlled by the timing of the snowmelt along with the surface air temperature and TWSA in June. The rate of increase in the freshwater flux from the four Siberian rivers decreased from 2000 to 2016, exhibiting large interannual variations corresponding to interannual variations in the TWSA. However, we identified a clear increase trend in the freshwater flux of ~4 km3/year when analysing the long-term 39-year historical record (1978–2016). Our results suggest that continued global warming will accelerate the transition towards the earlier timing of snowmelt and spring freshwater flux into the Arctic Ocean. Our findings also highlight the effects of earlier snowmelt on ecohydrological changes in the Northern Hemisphere.  相似文献   
169.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
170.
Abstract— The high‐pressure polymorphs of olivine, pyroxene, and plagioclase in or adjacent to shock melt veins (SMVs) in two L6 chondrites (Sahara 98222 and Yamato 74445) were investigated to clarify the related transformation mechanisms and to estimate the pressure‐temperature conditions of the shock events. Wadsleyite and jadeite were identified in Sahara 98222. Wadsleyite, ringwoodite, majorite, akimotoite, jadeite, and lingunite (NaAlSi3O8‐hollandite) were identified in Yamato 74445. Wadsleyite nucleated along the grain boundaries and fractures of original olivine. The nucleation and growth of ringwoodite occurred along the grain boundaries of original olivine, and as intracrystalline ringwoodite lamellae within original olivine. The nucleation and growth of majorite took place along the grain boundaries or fractures in original enstatite. Jadeite‐containing assemblages have complicated textures containing “particle‐like,” “stringer‐like,” and “polycrystalline‐like” phases. Coexistence of lingunite and jadeite‐containing assemblages shows a vein‐like texture. We discuss these transformation mechanisms based on our textural observations and chemical composition analyses. The shock pressure and temperature conditions in the SMVs of these meteorites were also estimated based on the mineral assemblages in the SMVs and in comparison with static high‐pressure experimental results as follows: 13–16 GPa, >1900 °C for Sahara 98222 and 17–24 GPa, >2100 °C for Yamato 74445.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号