首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   16篇
  国内免费   6篇
测绘学   13篇
大气科学   66篇
地球物理   74篇
地质学   183篇
海洋学   17篇
天文学   47篇
综合类   2篇
自然地理   13篇
  2024年   2篇
  2021年   5篇
  2020年   6篇
  2019年   6篇
  2018年   16篇
  2017年   19篇
  2016年   18篇
  2015年   14篇
  2014年   12篇
  2013年   36篇
  2012年   14篇
  2011年   30篇
  2010年   28篇
  2009年   21篇
  2008年   22篇
  2007年   17篇
  2006年   15篇
  2005年   6篇
  2004年   15篇
  2003年   18篇
  2002年   14篇
  2001年   14篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1994年   3篇
  1991年   4篇
  1989年   1篇
  1987年   2篇
  1984年   6篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1937年   1篇
  1931年   1篇
  1930年   1篇
  1914年   1篇
  1912年   1篇
排序方式: 共有415条查询结果,搜索用时 750 毫秒
131.
Climate change poses formidable challenge to the development of livestock sector in India. The anticipated rise in temperature between 2.3 and 4.8°C over the entire country together with increased precipitation resulting from climate change is likely to aggravate the heat stress in dairy animals, adversely affecting their productive and reproductive performance, and hence reducing the total area where high yielding dairy cattle can be economically reared. Given the vulnerability of India to rise in sea level, the impact of increased intensity of extreme events on the livestock sector would be large and devastating for the low-income rural areas. The predicted negative impact of climate change on Indian agriculture would also adversely affect livestock production by aggravating the feed and fodder shortages. The livestock sector which will be a sufferer of climate change is itself a large source of methane emissions, an important greenhouse gas. In India, although the emission rate per animal is much lower than the developed countries, due to vast livestock population the total annual methane emissions are about 9–10 Tg from enteric fermentation and animal wastes.  相似文献   
132.
We excite an epicyclic motion, the amplitude of which depends on the vertical position, z , in a simulation of a turbulent accretion disc. An epicyclic motion of this kind may be caused by a warping of the disc. By studying how the epicyclic motion decays, we can obtain information about the interaction between the warp and the disc turbulence. A high-amplitude epicyclic motion decays first by exciting inertial waves through a parametric instability, but its subsequent exponential damping may be reproduced by a turbulent viscosity. We estimate the effective viscosity parameter, α v, pertaining to such a vertical shear. We also gain new information on the properties of the disc turbulence in general, and measure the usual viscosity parameter, α h, pertaining to a horizontal (Keplerian) shear. We find that, as is often assumed in theoretical studies, α v is approximately equal to α h and both are much less than unity, for the field strengths achieved in our local box calculations of turbulence. In view of the smallness (∼0.01) of α v and α h we conclude that for β p gas p mag∼10 the time-scale for diffusion or damping of a warp is much shorter than the usual viscous time-scale. Finally, we review the astrophysical implications.  相似文献   
133.
134.
Independent geochronological and thermal modelling approaches are applied to a biostratigraphically exceptionally well‐controlled borehole, Alcsútdoboz‐3 (Ad‐3), in order to constrain the age of Cenozoic geodynamic events in the western Pannonian Basin and to test the efficacy of the methods for dating volcanic rocks. Apatite fission track and zircon U–Pb data show two volcanic phases of Middle Eocene (43.4–39.0 Ma) and Early Oligocene (32.72 ± 0.15 Ma) age respectively. Apatite (U–Th)/He ages (23.8–14.8 Ma) and independent thermal and subsidence history models reveal a brief period of heating to 55–70 °C at ~17 Ma caused by an increased heat‐flow related to crustal thinning and mantle upwelling. Our results demonstrate that, contrary to common perception, the apatite (U–Th)/He method is likely to record ‘apparent’ or ‘mixed’ ages resulting from subsequent thermal events rather than ‘cooling’ or ‘eruption’ ages directly related to distinct geological events. It follows that a direct conversion of ‘apparent’ or ‘mixed’ (U‐Th)/He ages into cooling, exhumation or erosion rates is incorrect.  相似文献   
135.
Additional aspects regarding the optimum fixed and roving sampling techniques, to those already explored in a previous authors’ throughfall study, are further investigated here. The roving technique consists in the random repositioning, with a frequency fr, of N throughfall gauges among M positions (M > N), oppositely to the fixed or stationary arrangement where N = M. Both fixed and roving optimum sampling techniques of 100 monitored throughfall events sampled with 200 fixed gauges under a semideciduous tropical rain forest in Panama were investigated by means of Monte‐Carlo numerical experiments. Mean dispersion was shown to be always smaller in the roving versus the fixed gauge arrangement, independently of the relocation frequency studied (fr = 0.1, 0.2, 0.5, 1), such that all roving schemes with N ≥ 50 gauges lay within ±5% of the mean cumulative throughfall. Results indicated that a low variability, high precision, and accuracy are obtained with a modest relocation frequency fr = 0.2 (i.e. a relocation every five episodes of the original 100 measured events) and N = 30 roving gauges, with no significant improvement worth the extra field work beyond fr > 0.2 and N >30. Only by increasing the number of roving positions from M < < 200 to M = 200, the precision and accuracy of the mean estimate were improved without comprising additional labour. Hence, a roving sampling scheme which relocates gauges over completely new fresh sites each roving cycle is recommended for future throughfall studies. Finally, we designed an a priori sampling strategy which permitted us to conclude that using only the first 20 out of the total 100 measuring events, for the remaining 80 throughfall field measurements, N = 40 roving gauges (i.e. five time less than the originally 200 gauges displayed) would have been sufficient for ensuring ≤5% error, expressed as percentage of the mean cumulative throughfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
136.
Cosmogenic isotope burial dating, using 10Be and 26Al, was applied to Plio–Pleistocene fluvial successions from the Lower Rhine Embayment, Germany. The approach consists of three principal steps: (1) measurement of cosmogenic nuclides in depth profiles, (2) modelling of hypothetical nuclide concentrations based on a first-order conceptualisation of the geological context and the principal succession of depositions and subsequent erosional and burial phases, and (3) using parameter estimation to identify values for the a priori unknown model parameters (burial age, initial nuclide concentrations, terrace erosion rates) that result in minimal disagreement between hypothetical and measured nuclide concentrations.The Late Pliocene Kieseloolite Formation was dated to 3650 ± 1490 ka and the Early Pleistocene Waalre Formation to 900 ± 280 ka. The unconformably overlying Upper Terrace Formation revealed ages of 740 ± 210 ka and 750 ± 250 ka for the two different sites. These findings are in good agreement with independent age control derived by bio-, magneto-, and litho-stratigraphy. Furthermore, identifiability and uncertainty analysis reveal a relationship between burial depth and sensitivity of isotope concentrations to burial age and erosion rate. Our results indicate that using shallower buried samples would enable a considerably more robust estimation of the burial age and the terrace erosion rate. Uncertainties arose mainly from nuclide measurements, and not from the uncertainties derived from modelling or insufficient knowledge of nuclide production and decay properties.  相似文献   
137.
Zircon has the outstanding capacity to record chronological, thermal, and chemical information, including the storage history of zoned silicic magma reservoirs like the one responsible for the Bishop Tuff of eastern California, USA. Our novel ion microprobe approach reveals that Bishop zircon rims with diverse chemical characteristics surround intermediate domains with broadly similar compositions. The highest Y, REE, U, and Th concentrations tend to accompany the largest excesses in Y + REE3+:P beyond what can be explained by xenotime substitution in zircon. Apparent Ti-in-zircon temperatures of <720°C for zircon rims are distinctly lower than most of the range in eruption temperatures, as estimated from FeTi-oxide equilibria and zircon solubility at quench. While permissive of crystallization of zircon at near-solidus conditions, the low Ti-in-zircon temperatures are probably better explained by sources of inaccuracy in the temperature estimates. After apparently nucleating from different melts, zircons from across the Bishop Tuff compositional spectrum may have evolved to broadly similar chemical and thermal conditions and therefore it is possible that there was no significant thermal gradient in the magma reservoir at some stage in its evolution. There is also no compelling evidence for punctuated heat ± chemical influxes during the intermediate stages of zircon growth. Judging by the zircon record, the main volume of the erupted magma evolved normally by secular cooling but the latest erupted portion is characterized by a reversal in chemistry that appears to indicate perfusion of the magma reservoir by—or zircon entrainment in—a less evolved melt from the one in which the zircons had previously resided.  相似文献   
138.
New LA-ICP-MS U–Pb detrital zircon ages from Ediacaran and Paleozoic siliciclastic rocks are used to constrain provenance and paleogeographic affinities of the Teplá-Barrandian unit (TBU) in the centre of the Bohemian Massif (Central Europe, Czech Republic). The samples taken span the period from ≤ 635 Ma to ~ 385 Ma and permit recognition of provenance changes that reflect changes in geotectonic regime. Detrital zircon age spectra of two Ediacaran, one Lower Cambrian and three Upper Ordovician samples resemble the ages known from the NW African proportion of Gondwana, particularly the Trans-Saharan belt, while three rocks from higher Lower Cambrian to Lowermost Ordovician strata contain detritus that may have been derived exclusively from local sources. The age spectrum of the Devonian rock is a combination of the NW Gondwanan and local features. These new findings in combination with a wide range of published data are in agreement with a Neoproterozoic subduction-related setting at the margin of Gondwana followed by a Cambrian/Early Ordovician rifting stage and an Ordovician passive margin setting. Furthermore the data are in favour of a position of the TBU at the Gondwanan margin throughout pre-Variscan times.  相似文献   
139.
A general increase in precipitation has been observed in Germany in the last century, and potential changes in flood generation and intensity are now at the focus of interest. The aim of the paper is twofold: a) to project the future flood conditions in Germany accounting for various river regimes (from pluvial to nival-pluvial regimes) and under different climate scenarios (the high, A2, low, B1, and medium, A1B, emission scenarios) and b) to investigate sources of uncertainty generated by climate input data and regional climate models. Data of two dynamical Regional Climate Models (RCMs), REMO (REgional Model) and CCLM (Cosmo-Climate Local Model), and one statistical-empirical RCM, Wettreg (Wetterlagenbasierte Regionalisierungsmethode: weather-type based regionalization method), were applied to drive the eco-hydrological model SWIM (Soil and Water Integrated Model), which was previously validated for 15 gauges in Germany. At most of the gauges, the 95 and 99 percentiles of the simulated discharge using SWIM with observed climate data had a good agreement with the observed discharge for 1961–2000 (deviation within ±10 %). However, the simulated discharge had a bias when using RCM climate as input for the same period. Generalized Extreme Value (GEV) distributions were fitted to the annual maximum series of river runoff for each realization for the control and scenario periods, and the changes in flood generation over the whole simulation time were analyzed. The 50-year flood values estimated for two scenario periods (2021–2060, 2061–2100) were compared to the ones derived from the control period using the same climate models. The results driven by the statistical-empirical model show a declining trend in the flood level for most rivers, and under all climate scenarios. The simulations driven by dynamical models give various change directions depending on region, scenario and time period. The uncertainty in estimating high flows and, in particular, extreme floods remains high, due to differences in regional climate models, emission scenarios and multi-realizations generated by RCMs.  相似文献   
140.
 We investigate the dependence of surface fresh water fluxes in the Gulf Stream and North Atlantic Current (NAC) area on the position of the stream axis which is not well represented in most ocean models. To correct this shortcoming, strong unrealistic surface fresh water fluxes have to be applied that lead to an incorrect salt balance of the current system. The unrealistic surface fluxes required by the oceanic component may force flux adjustments and may cause fictitious long-term variability in coupled climate models. To identify the important points in the correct representation of the salt balance of the Gulf Stream a regional model of the northwestern part of the subtropical gyre has been set up. Sensitivity studies are made where the westward flow north of the Gulf Stream and its properties are varied. Increasing westward volume transport leads to a southward migration of the Gulf Stream separation point along the American coast. The salinity of the inflow is essential for realistic surface fresh water fluxes and the water mass distribution. The subpolar–subtropical connection is important in two ways: The deep dense flow from the deep water mass formation areas sets up the cyclonic circulation cell north of the Gulf Stream. The surface and mid depth flow of fresh water collected at high northern latitudes is mixed into the Gulf Stream and compensates for the net evaporation at the surface. Received: 19 September 2000 / Accepted: 5 February 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号