首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  国内免费   3篇
大气科学   2篇
地质学   41篇
天文学   7篇
自然地理   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   3篇
  2003年   4篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1969年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
31.
Abstract Reactivation of early foliations accounts for much of the progressive strain at more advanced stages of deformation. Its role has generally been insufficiently emphasized because evidence is best preserved where porphyroblasts which contain inclusion trails are present. Reactivation occurs when progressive shearing, operating in a synthetic anastomosing fashion parallel to the axial planes of folds, changes to a combination of coarse- and finescale zones of progressive shearing, some of which operate antithetically relative to the bulk shear on a fold limb. Reactivation of earlier foliations occurs in these latter zones. Reactivation decrenulates pre-existing or just-formed crenulations, generating shearing along the decrenulated or rotated pre-existing foliation planes. Partitioning of deformation within these foliation planes, such that phyllosilicates and/or graphite take up progressive shearing strain and other minerals accommodate progressive shortening strain, causes dissolution of these other minerals. This results in concentration of the phyllosilicates in a similar, but more penetrative manner to the formation of a differentiated crenulation cleavage, except that the foliation can form or intensify on a fold limb at a considerable angle to the axial plane of synchronous macroscopic folds. Reactivation can generate bedding-parallel schistosity in multideformed and metamorphosed terrains without associated folds. Heterogeneous reactivation of bedding generates rootless intrafolial folds with sigmoidal axial planes from formerly through-going structures. Reactivation causes rotation or ‘refraction’of axial-plane foliations (forming in the same deformation event causing reactivation) in those beds or zones in which an earlier foliation has been reactivated, and results in destruction of the originally axial-plane foliation at high strains. Reactivation also provides a simple explanation for the apparently ‘wrong sense’, but normally observed ‘rotation’of garnet porphyroblasts, whereby the external foliation has undergone rotation due to antithetic shear on the reactivated foliation. Alternatively, the rotation of the external foliation can be due to its reactivation in a subsequent deformation event. Porphyroblasts with inclusion trails commonly preserve evidence of reactivation of earlier foliations and therefore can be used to identify the presence of a deformation that has not been recognized by normal geometric methods, because of penetrative reactivation. Reactivation often reverses the asymmetry between pre-existing foliations and bedding on one limb of a later fold, leading to problems in the geometric analysis of an area when the location of early fold hinges is essential. The stretching lineation in a reactivated foliation can be radically reoriented, potentially causing major errors in determining movement directions in mylonitic schistosities in folded thrusts. Geometric relationships which result from reactivation of foliations around porphyroblasts can be used to aid determination of the timing of the growth of porphyroblasts relative to deformation events. Other aspects of reactivation, however, can lead to complications in timing of porphyroblast growth if the presence of this phenomenon is not recognized; for example, D2-grown porphyroblasts may be dissolved against reactivated S1 and hence appear to have grown syn-D1.  相似文献   
32.
Abstract The mid-Tertiary blueschists, eclogites and eclogitic gneisses of northern New Caledonia are the products of four phases of regional metamorphism and deformation (D1–D4). Omphacite, lawsonite and Mn-rich garnet isogradic surfaces were developed during the second deformation (D2) under prograde pressure and temperature conditions. Subsequent deformations (D3–D4) folded these D2 isogradic surfaces. However, within the P-retrograde, T-prograde metamorphic environment of the D4 phase, omphacite altered to albite and chlorite; as a result, a late-stage sub-horizontal isogradic surface developed for omphacite-out where this mineral preserved as relics within syn-D4 albite porphyroblasts. Other minerals that crystallized for the first time (epidote) or had rim additions (almandine phengite) during D4, also form nearly horizontal isogradic surfaces. Porphyroblastic garnet and albite contain inclusion trails, which allow their microstructural development and crystallization of the matrix to be traced from D2 to D4. Late syn-D4 the temperature increased markedly in association with an extensive exothermic decarbonation, even though the rocks were in a state of pressure retrogression. This caused considerable neocrystallization, recrystallization and growth of mattix and porphyroblasts such that, although S2 foliation crenulated by D3 and D4 is readily observable, almost all signs of stored strain due to D3 and D4 have been removed, and the deeper schists and eclogitic gneisses superficially appear to have undergone a drastic annealing recrystallization, post-dating deformation.  相似文献   
33.
Multibeam sonar surveys in the past decade, augmented by single-beam data from the OLEX charting system, reveal landsystems on Atlantic Canadian shelves that are diagnostic of Late Wisconsinan ice-sheet dynamics. Four landsystems are described. (1) The Bay of Fundy landsystem comprises two contrasting sets of bedforms, and is interpreted as evidence of topographically controlled fast-flowing ice adjacent to slower-moving ice. (2) The German Bank landsystem off southwest Nova Scotia is comprised of glacially fluted terrain overprinted by De Geer moraines and arcuate recessional moraines. We infer that a flow of grounded glacial ice out of the Bay of Fundy was followed by steady retreat, punctuated by at least one major re-advance. (3) The Placentia Bay landsystem consists of a convergent field of streamlined landforms with superimposed De Geer moraines, overprinted in one area by flutings. We infer that this landsystem was formed in the onset zone of fast-flowing ice, and that overprinting was due to a re-advance of ice from offshore. (4) The south coast of Newfoundland landsystem, which includes arcuate, fjord-mouth moraines and a coast-parallel, fluted moraine, indicates strong topographic control on a retreating marine ice margin as it reached a fjord coastline. These submarine glacial landsystems are not inconsistent with a conceptual model showing Late Wisconsinan ice advance to shelf edges, rapid calving retreat along deepwater channels and slower retreat of ice margins grounded in shallow water. The re-advances documented two of the study areas have parallels in the Last British Ice Sheet, confirming that the reorganization of marine-based ice sheets, caused by calving in embayments, led to internally forced re-advances.  相似文献   
34.
An ~W–E belt of maximum bulk horizontal shortening (the orogen core) moved North relative to the overlying crust to form the Himalayan Syntaxes due to roll‐on of this portion of the Indian plate. This displacement occurred below a lengthy succession of gently dipping decollements that formed episodically at a depth of ~30 km along the orogen core due to numerous periods of gravitational collapse and spreading of the overlying ductile crust. Successively developed basal decollements were deformed when continued bulk horizontal shortening of the orogen core below reasserted dominance over the effects of gravitational collapse above causing refolding about steeply dipping axial planes. This resulted in northwards migration of the orogen core above depths of ~30 km causing rocks metamorphosing at depths of ~22 km on the north side of the orogen core to be moved to its south side with no change in depth as roll‐on progressed. Garnet porphyroblasts record this lengthy history of lateral migration across the orogen within their inclusion trails. The ~6.4 kbar average pressures accompanying it were obtained from the Mn, Fe and Ca contents of successive garnet cores. Garnet grew at depths of ~22 km until movement towards the surface initiated on successively developed decollements that accommodated the volume constraints of gravitational collapse and spreading on both sides of the orogen. The speed of extrusional displacement increased the further the rocks migrated from the orogen core developing mylonitic schists around the porphyroblasts. This truncated inclusion trails against all matrix foliations as the porphyroblasts were carried towards the surface. Indeed, these rocks were multiply deformed during at least four distinct periods of deformation after mylonitization began and prior to exposure above the Main Central Thrust (MCT). Three or more sub‐vertical and sub‐horizontal foliations were formed during each of the five changes in FIA trend (foliation inflection/intersection axes in porphyroblasts) preserved in these rocks. The inclusion trail asymmetries and P‐T of garnet core growth accompanying each FIA reveal that the first four changes in FIA trend, which define periods of tectonism about one direction of horizontal bulk shortening (relative plate motion), occurred on the north side of the orogen core. The fifth occurred on the south side of the orogen core and the switch in shear sense on gently dipping foliation planes that resulted from this shift to the south eventually led to the development of the MCT. When magnetic anomaly 22 that formed in the Southern Indian Ocean Ridge is taken into account, these five changes in FIA trend correlate markedly with changes in the motion of India relative to a constant Eurasia from 50 to c. 25 Ma. They reveal that Eurasia moved NNW during FIAs 1, 3 and 4 and SSE during FIA 5 when the shear sense on gently dipping foliations switched to top to the S. They suggest collision of India with Eurasia took place at 50 Ma, immediately prior to the development of FIA 1.  相似文献   
35.
36.
Abstract Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron‐carbonate were initiated. Naturally occurring siderite was first characterized by a variety of techniques to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten‐alloy holders (W = 90%, Ni = 6%, Cu = 4%) to further ensure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are >50% Fe+2 in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of sizes (?50–100 nm), compositions (100% magnetite to 80% magnetite‐20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) and as the magnetites in Martian meteorite Allan Hills (ALH) 84001. Fritz et al. (2005) previously concluded that ALH 84001 experienced ?32 GPa pressure and a resultant thermal pulse of ?100–110°C. However, ALH 84001 contains evidence of local temperature excursions high enough to melt feldspar, pyroxene, and a silica‐rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to > 470°C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH 84001 could be a product of shock devolatilization of siderite as well.  相似文献   
37.
Abstract— From April 24 to May 14, 2000, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker mission's near infrared spectrometer (NIS) obtained its highest resolution data of 433 Eros. High signal‐to‐noise ratio NIS reflectance spectra cover a wavelength range of 800–2400 nm, with footprint sizes from 213 times 427 m to 394 times 788 m. This paper describes improvement in instrument calibration by remediation of internally scattered light; derivation of a “pseudo channel” for NIS at 754 nm using Multispectral Imager (MSI) Eros approach maps at 951 and 754 nm; synthesis of a 3127‐spectrum high‐resolution data set with the improved calibration and expanded wavelength coverage; and investigation of global and localized spectral variation with respect to mineralogy, composition, and space weathering of Eros, comparing the findings with previous analyses. Scattered light removal reduces the “red” slope of Eros spectra, though not to the level seen by telescopic observations. The pseudo channel completes sampling of Eros' 1 micron (Band I) absorption feature, enabling direct comparison of NIS data with other asteroid and meteorite spectra without additional scaling or correction. Following scattered light removal and wavelength range extension, the spectral parameters of average Eros plot well inside the S(IV) field of Gaffey et al. (1993) and are consistent with the L6 chondrite meteorite fields of Gaffey and Gilbert (1998). Although Eros shows no evidence of mineralogical heterogeneity, modest spectral variations correlate with morphologically and geographically distinct areas of the asteroid. Eros bright‐to‐dark spectral ratios are largely consistent with laboratory “space weathering” experiment results and modeling of space weathering effects. Eros brightness variation unaccompanied by significant spectral variation departs from “lunar‐type”—where band depths, slopes, and albedoes all correlate—and “Ida‐type”—where significant spectral variation is unaccompanied by corresponding brightness variation. The brightest areas on Eros—steep crater walls—have lesser spectral slope and deeper Band I, consistent with exposure of “fresher,” less space weathered materials. Bright crater slope materials have opx/(opx + olv) of 0.24–0.29 and may be more representative of the subsurface mineralogy than “average” Eros, which is probably affected by space weathering. The floors of the large craters Psyche and Himeros have lower albedo and contain the most degraded or altered looking materials. NIS spectra retain a “red” spectral slope at greater than 2 microns. The recalibrated and expanded NIS spectra show better agreements with mixing models based on space weathering of chondritic mixtures.  相似文献   
38.
Fresh samples of hypabyssal kimberlite from the five major kimberlitepipes in the Kimberley area of South Africa have been analysedfor their bulk-rock major and trace element geochemistry. Thegeochemical data allow identification of the influence of crustalcontamination in certain samples, best illustrated in termsof elevated SiO2, Al2O3, Pb and heavy rare earth element (HREE)contents. Samples devoid of such crustal contamination showcoherent major and fluid-immobile trace element variations,whereas fluid-mobile trace elements are scattered. Kimberlitesrich in macrocrysts are shown to reflect substantial (up to35%) entrainment of mantle peridotite, with Ni–SiO2 andSc–SiO2 variations defining mixing trajectories towardsgarnet lherzolite. The likely primary magma(s) parental to theKimberley kimberlites is suggested to have a composition of26–27 wt % MgO, 26–27 wt % SiO2,  相似文献   
39.
SIMONETTI  A.; BELL  K. 《Journal of Petrology》1994,35(6):1597-1621
Initial Nd, Pb, and Sr isotopic data from carbonatites and associatedintrusive silica-undersaturated rocks from the early Jurassic,Chilwa Island complex, located in southern Malawi, central Africa,suggest melt derivation from a Rb/Sr- and Nd/Sm-depleted butTh/Pb- and U/Pb-enriched mantle source. Initial 143Nd/144Nd(0.51265–0.51270) isotope ratios from the Chilwa Islandcarbonatites are relatively constant, but their initial 87Sr/86Sr(0.70319–0.70361) ratios are variable. The 18Osmow (9.53–14.15%0)and 13CPDB (–3.27 to –1.50%0) isotope ratios ofthe carbonates are enriched relative to the range of mantlevalues, and there is a negative correlation between 18O andSr isotope ratios. The variations in Sr, C, and O isotopic ratiosfrom the carbonatites suggest secondary processes, such as interactionwith meteoric groundwater during late-stage carbonatite activity.The initial 143Nd/144Nd (0.51246 0.51269) and initial 87Sr/86Sr(0.70344–0.70383) isotope ratios from the intrusive silicaterocks are more variable, and the Sr more radiogenic than thosefrom the carbonatites. Most of the Pb isotope data from Chilwa Island plot to the rightof the geochron and close to the oceanic regression line definedby MORBs and OIBs. Initial Pb isotopic ratios from both carbonatites(207Pb/204Pb 15.63–15.71; 206Pb/204Pb 19.13–19.78)and silicate rocks (207Pb/204Pb 15.61–15.72; 206Pb/204Pb18.18–20.12) show pronounced variations, and form twogroups in Pb-Pb plots. The isotopic variations shown by Nd, Pb, and Sr for the ChilwaIsland carbonatites and intrusive silicates suggest that thesemelts underwent different evolutionary histories. The chemicaldata, including isotopic ratios, from the carbonatites and olivinenephelinites are consistent with magmatic differentiation ofa carbonated-nephelinite magma. A model is proposed in whichdifferentiation of the carbonatite magma was accompanied byfenitization (metasomatic alteration) of the country rocks bycarbonatite-derived fluids, and subsequent alteration of thecarbonatite by hydrothermal activity. The chemical and isotopicdata from the non-nephelinitic intrusive silicate rocks reveala more complex evolutionary history, involving either selectivebinary mixing of lower-crustal granulites and a nephelinitemagma, or incremental batch melting of a depleted source andsubsequent crustal contamination.  相似文献   
40.
REPLY     
C. M. BELL 《Sedimentology》1982,29(5):750-751
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号