首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1010篇
  免费   64篇
  国内免费   4篇
测绘学   12篇
大气科学   79篇
地球物理   291篇
地质学   380篇
海洋学   71篇
天文学   207篇
综合类   1篇
自然地理   37篇
  2023年   7篇
  2022年   6篇
  2021年   12篇
  2020年   14篇
  2019年   8篇
  2018年   36篇
  2017年   36篇
  2016年   58篇
  2015年   33篇
  2014年   60篇
  2013年   78篇
  2012年   54篇
  2011年   46篇
  2010年   44篇
  2009年   62篇
  2008年   44篇
  2007年   23篇
  2006年   26篇
  2005年   43篇
  2004年   37篇
  2003年   16篇
  2002年   20篇
  2001年   14篇
  2000年   16篇
  1999年   9篇
  1998年   14篇
  1997年   15篇
  1996年   12篇
  1995年   18篇
  1994年   15篇
  1993年   7篇
  1992年   4篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1985年   9篇
  1984年   18篇
  1983年   17篇
  1982年   14篇
  1981年   15篇
  1980年   8篇
  1979年   11篇
  1978年   13篇
  1977年   10篇
  1975年   7篇
  1974年   5篇
  1973年   4篇
  1972年   5篇
  1969年   7篇
  1966年   3篇
排序方式: 共有1078条查询结果,搜索用时 31 毫秒
991.
The Gulf of Cadiz: an unstable giant contouritic levee   总被引:1,自引:0,他引:1  
Recent multibeam bathymetry and acoustic imagery data provide a new understanding of the sedimentary system located in the Gulf of Cadiz which is under the influence of a strong current, the Mediterranean Outflow Water (MOW). When it comes out from the Strait of Gibraltar, the MOW is either channelled along major or secondary channels, or spills over a sedimentary levee. Frequent earthquakes and the constant current shearing generate widespread sediment deformation and instability of contourite deposits. Secondary channels can form by retrogression following an initial failure. At their mouth, sediment accumulates in the form of small sandy contourite lobes. These observations suggest that the Gulf of Cadiz system shares many similarities with channel–levee complexes formed by turbidity current activity. The main difference is that, in the Gulf of Cadiz, the main process is a strongly flowing saline current which locally interacts with gravity processes.  相似文献   
992.
To aid prediction of the flow hydrograph in a basin with limited data, a practical approach to determining a regionalized Clark instantaneous unit hydrograph (IUH) model is presented. The proposed model is described in terms of the synthetic time–area concentration curve, the concentration time, and a special regional similarity value that is valid in the whole basin. The latter was estimated from a Monte Carlo testing procedure based on the normal probability distribution of transformed regional similarity values composed of the time of concentration and the storage coefficient in gauged basins. The time–area concentration curve and the concentration time were calculated from a rational equation as in conventional methods. The method of transformation adopted was the Box–Cox power transformation, which is known to make non‐normal values resemble normal data. By introducing the regional similarity value into a Clark IUH, a statistically best estimate of IUH for given data conditions and its quantified degree of uncertainty were realized. The Wi River basin in Korea was used to test the applicability of the regionalized Clark IUH. The performance of the suggested methodology was evaluated by assuming an ungauged sub‐basin at the site. The results showed that the IUH model developed in this work was an effective tool, predicting a reliable hydrograph within the study area even though only limited data were available. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
993.
994.
The temporal variability of water-level fluctuations in the chalk aquifer of Upper Normandy, France is constrained by natural climate fluctuations and is closely linked to the regional geological patterns. The chalk plateaus are covered with 5–50 m thick semi-permeable surficial formations; the thickness of the underlying chalk aquifer varies from 50 to 300 m. The relationship among climate oscillations, piezometric levels, and geologic structure were investigated by correlation, Fourier spectral, and continuous wavelet analyses of selected piezometric time-series data. Analysis focused on two piezometers located on the uplifted side of a major fault and two piezometers on the downthrown side. After generalization to other piezometers in the region, it was deduced that, in the downthrown compartments, a substantial aquifer and surficial formations thickness would imply a strong attenuation of annual variability, while multi-year variability is clearly expressed. Conversely, in the uplifted compartments, a thin layer of surficial formations and small thickness of the chalk authorizes strong variations on the annual mode with respect to the contribution of long-term climatic oscillations (multi-year variability). The results then demonstrated—and proposed a spatial determination of—the differential influence of geological patterns on the filtering of climate-induced oscillations in piezometric variability.  相似文献   
995.
Widespread Cretaceous remagnetization is documented in several Mesozoic basins in North Central Spain. Organyà Basin (South Central Pyrenean foreland) is atypical in the sense that the lower part of the rock sequence (Berriasian-Barremian limestones) is remagnetized while the upper portion (Aptian-Albian marls) is not (Dinarès-Turell and García-Senz, 2000). Here, this view is confirmed by the analysis of 41 new paleomagnetic sites over the entire basin, so that a 3D view is obtained. Thermoviscous resetting of the natural remanent magnetization can be ruled out, hence the remagnetization is chemical in origin. A positive breccia-test on remagnetized strata constrains the remagnetization age to older than the Paleocene-Eocene, when the backthrust system was active. The remagnetization is argued to have occurred early in the geological history of the Organyà Basin either in the elevated geothermal gradient regime during the syn-rift extension or at the earliest phase of the later compression. Burial is considered the most important cause combined with the lithological effect that limestones are more prone to express remagnetization than marls. The observed pressure solution in the remagnetized limestone is likely associated with the remagnetization, whereas it is unlikely that externally derived fluids have played an important role.  相似文献   
996.
In-situ cosmogenic 36Cl production rates from spallation of Ca and K determined in several previously published calibration studies differ by up to 50%. In this study we compare whole rock 36Cl exposure ages with 36Cl exposure ages evaluated in Ca-rich plagioclase in the same 10 ± 3 ka lava sample taken from Mt. Etna (Sicily, 38° N). The exposure age of the sample was determined by K–Ar and corroborated by cosmogenic 3He measurements on cogenetic pyroxene phenocrysts. Sequential dissolution experiments showed that high Cl concentrations in plagioclase grains could be reduced from 450 ppm to less than 3 ppm after 16% dissolution. 36Cl exposure ages calculated from the successive dissolution steps of this leached plagioclase sample are in good agreement with K–Ar and 3He age. Stepwise dissolution of whole rock grains, on the other hand, is not as effective in reducing high Cl concentrations as it is for the plagioclase. 330 ppm Cl still remains after 85% dissolution. The 36Cl exposure ages derived are systematically about 30% higher than the ages calculated from the plagioclase. We could exclude contamination by atmospheric 36Cl as an explanation for this overestimate. Magmatic 36Cl was estimated by measuring a totally shielded sample, but was found to account for only an insignificant amount of 36Cl in the case of the 10 ka whole rock sample. We suspect that the overestimate of the whole rock exposure age is due to the difficulty in accurately assessing all the factors which control production of 36Cl by low-energy neutron capture on 35Cl, particularly variable water content and variable snow cover. We conclude that some of the published 36Cl spallation production rates might be overestimated due to high Cl concentrations in the calibration samples. The use of rigorously pretreated mineral separates reduces Cl concentrations, allowing better estimates of the spallation production rates.In the Appendix of this paper we document in detail the equations used. These equations are also incorporated into a 36Cl calculation spreadsheet made available in the supplementary data.  相似文献   
997.
Recent observations and missions to Mars have provided us with new insight into the past habitability of Mars and its history. At the same time they have raised many questions on the planet evolution. We show that even with the few data available we can propose a scenario for the evolution of the Martian atmosphere in the last three billion years. Our model is obtained with a back integration of the Martian atmosphere, and takes into account the effects of volcanic degassing, which constitutes an input of volatiles, and atmospheric escape into space. We focus on CO2, the predominant Martian atmospheric gas.Volcanic CO2 degassing rates are obtained for different models of numerical model crust production rates [Breuer, D., Spohn, T. 2003. Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. J. Geophys. Res. - Planets, 108, E7, 5072, Breuer, D., Spohn, T., 2006. Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field. Planet. Space Sci. 54 (2006) 153–169; Manga, M., Wenzel, M., Zaranek, S.E., 2006. Mantle Plumes and Long-lived Volcanism on Mars as Result of a Layered Mantle. American Geophysical Union Fall Meeting 2006, Abstract #P31C-0149.] and constrained on observation. By estimating the volatile contents of the lavas, the amount of volatiles released in the atmosphere is estimated for different scenarios. Both non-thermal processes (related to the solar activity) and thermal processes are studied and non-thermal processes are incorporated in our modelling of the escape [Chassefière, E., Leblanc, F., Langlais, B., 2006, The combined effects of escape and magnetic field history at Mars. Planet. Space Sci. Volume 55, Issue 3, Pages 343–357.]. We used measurements from ASPERA and Mars Express and these models to estimate the amount of lost atmosphere.An evolution of the CO2 pressure consistent with its present state is then obtained. A crustal production rate of at least 0.01 km3/year is needed for the atmosphere to be at steady state. Moreover, we show that for most of the scenarios a rapid loss of the primary (and primordial) atmosphere due to atmospheric escape is required in the first 2 Gyr in order to obtain the present-day atmosphere. When CO2 concentration in the mantle is high enough (i.e. more than 800 ppm), our results imply that present-day atmosphere would have a volcanic origin and would have been created between 1 Gyr and 2 Gyr ago even for models with low volcanic activity. If the volcanic activity and the degassing are intense enough, then the atmosphere can even be entirely secondary and as young as 1 Gyr. However, with low activity and low CO2 concentration (less than 600 ppm), the present-day atmosphere is likely to be for the major part primordial.  相似文献   
998.
Performance of process‐based hydrological models is usually assessed through comparison between simulated and measured streamflow. Although necessary, this analysis is not sufficient to estimate the quality and realism of the modelling since streamflow integrates all processes of the water cycle, including intermediate production or redistribution processes such as snowmelt or groundwater flow. Assessing the performance of hydrological models in simulating accurately intermediate processes is often difficult and requires heavy experimental investments. In this study, conceptual hydrological modelling (using SWAT) of a semi‐arid mountainous watershed in the High Atlas in Morocco is attempted. Our objective is to analyse whether good intermediate processes simulation is reached when global‐satisfying streamflow simulation is possible. First, parameters presenting intercorrelation issues are identified: from the soil, the groundwater and, to a lesser extent, from the snow. Second, methodologies are developed to retrieve information from accessible intermediate hydrological processes. A geochemical method is used to quantify the contribution of a superficial and a deep reservoir to streamflow. It is shown that, for this specific process, the model formalism is not adapted to our study area and thus leads to poor simulation results. A remote‐sensing methodology is proposed to retrieve the snow surfaces. Comparison with the simulation shows that this process can be satisfyingly simulated by the model. The multidisciplinary approach adopted in this study, although supported by the hydrological community, is still uncommon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
999.
We report new Nd, Hf, Sr, and high-precision Pb isotopic data for 44 lava and tephra samples from Erebus volcano. The samples cover the entire compositional range from basanite to phonolite and trachyte, and represent all three phases of the volcanic evolution from 1.3 Ma to the present. Isotopic analyses of 7 samples from Mt. Morning and the Dry Valley Drilling Project (DVDP) are given for comparison. The Erebus volcano samples have radiogenic 206Pb/204Pb, unradiogenic 87Sr/86Sr, and intermediate 143Nd/144Nd and 176Hf/177Hf, and lie along a mixing trajectory between the two end-member mantle components DMM and HIMU. The Erebus time series data show a marked distinction between the early-phase basanites and phonotephrites, whose Nd, Hf, Sr, and Pb isotope compositions are variable (particularly Pb), and the current ‘phase-three’ evolved phonolitic lavas and bombs, whose Nd, Hf, Sr, and Pb isotope compositions are essentially invariant. Magma mixing is inferred to play a fundamental role in establishing the isotopic and compositional uniformity in the evolved phase-three phonolites. In-situ analyses of Pb isotopes in melt inclusions hosted in an anorthoclase crystal from a 1984 Erebus phonolite bomb and in an olivine from a DVDP basanite are uniform and identical to the host lavas within analytical uncertainties. We suggest that, in both cases, the magma was well mixed at the time melt inclusions were incorporated into the different mineral phases.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号