首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   9篇
海洋学   1篇
自然地理   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2006年   1篇
排序方式: 共有15条查询结果,搜索用时 156 毫秒
11.
Located in the southeast of Tunisia, on the Mediterranean Sea, Jerba Island has a semiarid climate condition. The surface water scarcity has made groundwater the main source to supply the domestic, touristic, and agricultural water demand. Unconfined aquifer is a vulnerable costal aquifer system that undergoes several phenomena. This work aims at assessing the geochemical and bacteriological groundwater quality, defining groundwater pollution sources and promoting sustainable development and effective management of groundwater resources in Jerba Island. Data were collected after the wet season in 2014 from 79 wells. Electric conductivity, pH, TDS, and major and fecal tracers (total coliforms, thermotolerant coliforms, Escherichia coli, and Salmonella) were analyzed. Geochemical modeling including the relationships between geochemical tracers Na+ vs. Cl?, Ca2+ vs. Cl?, K+ vs. Cl?, representative ionic ratios (Br?/Cl?, Na+/Cl?, Mg2+/Ca2+), and statistical analysis were used to specify major process contributing to groundwater pollution and main factors controlling groundwater mineralization in the island. Groundwater varieties were hydrochemically classified into three types in terms of salinity values: group 1 (8.86%) to fresh water, group 2 (27.84%) to brackish water, and group 3 (63.29%) belongs to saline water. In addition, groundwater quality revealed high concentrations in chemical pollution tracers (Na+, Cl?, SO4 2?, and NO3 ?) and fecal tracers. Besides, most of the sampled wells were contaminated with nitrate (50.63%). Also, thermotolerant coliforms and E. coli were detected in all groundwater samples (96.2% of wells). Results indicated that the Jerba shallow aquifer was under serious threat from both natural and anthropogenic contamination. However, the wild discharge of domestic effluents, septic tanks, and sewage were the main origins of underground water contamination in Jerba Island. The reduction of fecal sources, through constructing normalized latrines is thus recommended.  相似文献   
12.
13.
Groundwater is of a paramount importance in arid areas, as it represents the main water resource to satisfy the different needs of the various sectors. Nevertheless, coastal aquifers are generally subjected to seawater intrusion and groundwater quality degradation. In this study, the groundwater quality of the coastal Jeffara aquifer (southeastern Tunisia) is evaluated to check its suitability for irrigation purposes. A total of 74 groundwater samples were collected and analyzed for various physical and chemical parameters, such as, electrical conductivity, pH, dissolved solids (TDS), Na, K, Ca, Mg, Cl, HCO3, and SO4. Sodium adsorption ratio, magnesium adsorption ratio, Sodium percentage, and permeability index were calculated based on the analytical results. The analytical results obtained show a strong mineralization of the water in the studied aquifer. TDS concentrations range from 3.40 to 18.84 g?L?1. Groundwater salinity was shown to be mainly controlled by sodium and chloride. The dominant hydrochemical facieses are Na–Cl–Ca–SO4, mainly as a result of mineral dissolution (halite and gypsum), infiltration of saline surface water, and seawater intrusion. Assessment of the groundwater quality of the different samples by various methods indicated that only 7% of the water, in the northwest of the study area, is considered suitable for irrigation purposes while 93% are characterized by fair to poor quality, and are therefore just suitable or unsuitable for irrigation purposes.  相似文献   
14.
The overexploitation of groundwater in coastal aquifers is often accompanied by seawater intrusion, intensified by climate change and sea level rise. Heading long-term water quality safety and thus the determination of vulnerable zones to seawater intrusion becomes a significant hydrogeological task for many coastal areas. Due to this background, the present study focussed the established methodology of the GIS-based GALDIT model to assess the aquifer vulnerability to seawater intrusion for the Algerian example of the Quaternary coastal Collo aquifer. According to the result analysis overall, more than half of the total surface of the northern study area can be classified as highly vulnerable. Besides the coastline, the areas nearby the local wadis of Guebli and Cherka occur to be the most vulnerable in the region. In view of further map removal performance as well as single-parameter sensitivity analyses from a coupled perspective respectively the GALDIT parameters, distance from the shore (D) and aquifer hydraulic conductivity (A) have been found to be of key significance regarding the model results (mean effective weightings ~?18–19%). Overall, the study results provide a good approximation basis for future management decisions of the Collo aquifer region, including various perspectives such as identification of suitable settings for prospective groundwater pumping wells.  相似文献   
15.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号