首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   11篇
  国内免费   5篇
测绘学   5篇
大气科学   4篇
地球物理   65篇
地质学   53篇
海洋学   16篇
天文学   16篇
综合类   1篇
自然地理   21篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   15篇
  2010年   13篇
  2009年   8篇
  2008年   9篇
  2007年   11篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2002年   12篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
41.
42.
Gulf Stream frontal disturbances cause nutrient-rich waters to frequently upwell and intrude onto the southeastern United States continental shelf between Cape Canaveral, Florida and Cape Hatteras, North Carolina. Phytoplankton response in upwelled waters was determined with three interdisciplinary studies conducted during April 1979 and 1980, and in summer 1978. The results show that when shelf waters are not stratified, upwelling causes productive phytoplankton (diatom) blooms on the outer shelf. Phytoplankton production averages about 2 g C m−2 d−1 during upwelling events, and ‘new’ production is 50% or more of the total. When shelf waters are stratified, upwelled waters penetrate well onto the shelf as a subsurface intrusion in which phytoplankton production averages about fives times higher than the nutrient-depleted overlying mixed layer. Phytoplankton within the intrusion deplete upwelled NO3 in about 7 to 10 days, at which point no further net increase in phytoplankton biomass occurs.Current meter records show that upwelling occurs roughly 50% of the time on the outer shelf during November to April (shelf not stratified), and we estimate that seasonal primary production in upwelled waters is 175 g C m−2 6 months−1 of which at least 50% is ‘new’ production. More than 90% of outer shelf primary and ‘new’ production occurs during upwelling and thus upwelling is the dominant process affecting primary productivity of the outer shelf. Our seasonal estimates of outer shelf primary and ‘new’ production are, respectively, three and ten times higher than previous estimates that did not account for upwelling.  相似文献   
43.
Particulate matter samples filtered from near-bottom, 30-liter water samples collected during the GEOSECS Atlantic cruise were analyzed by the Computer Evaluated Scanning Electron Microscope Image (CESEMI-2) system. This system permitted automated discrete particle analysis for the elements Al, Si, P, S, K, Ca, and Fe by energy-dispersive X-ray spectrometry and for particle size. Approximately 2000 particles in the size range 1–20 μm, representative of several milliliters of seawater, were analyzed per sample and yielded discrete size and chemical analysis of the major classes of particulate matter—opal, calcium carbonate, and clay—as well as some regularly occurring subclasses of clay and other minor classes.The distributional patterns of the major classes matched both in chemistry and abundance their general distributional patterns in sediments. Clay particles reflected high- and low-latitude sources; opal particles, patterns of diatom productivity; and carbonate, patterns of productivity as well as the calcite saturation chemistry of the water column. Superimposed on these features was evidence for long-range transport of particles in well-defined bottom water masses such as the Antarctic Bottom Water. Such transport is believed to occur through a series of resuspension events, in which case particle distributions match the properties of the sediments. Cases were found where near-bottom particles did not match the sediments, especially in quiescent environments.  相似文献   
44.
The occurrence and origin of marialitic scapolite in the Humboldt lopolith was investigated in the field and in the laboratory using petrographic and experimental techniques. Scapolite occurs in three modes: as a pervasive replacement of plagioclase and other minerals in gabbro, diorite and extrusive rocks; as a poikiloblastic mineral in scapolitite dikes; and as a fracture-filling mineral with analcime, albite and sphene in scapolite veins. Additional secondary minerals associated with scapolite include epidote, prehnite, hornblende and diopside-salite clinopyroxene. Relations with these minerals suggest that most marialitic scapolite grew at temperatures around 400° C. Scapolite composition varies from EqAn12 to EqAn37, containing from 72 to 96 atomic% Cl in the R position. Experiments on systems of similar compositions indicate that NaCl-H2O fluid having more than 40 mol% NaCl is needed to stabilize the scapolite.Variation in scapolite compositions is due to thermal and fluid compositional gradients normal to conduits of hydrothermal fluids, and occurs on a scale up to 100 m. The likely source of Na and Cl is pre-existing evaporites or evaporitic brine derived from the wallrocks. Salinity could have been increased to a level sufficient to stabilize scapolite by hydration of an originally dry magma, possibly aided by hydrothermal boiling. Results may be applied to hydrothermal alteration in areas of rifting or back-arc spreading, and in mid-ocean ridge hydrothermal systems.  相似文献   
45.
Distribution‐free statistical methods of comparative data analysis have identi?ed subtle granulometric differences attributed to the evolution of barchan form at Gurra‐Gurra waterhole. Geomorphic locations on the barchan dunes display statistically signi?cant grain‐size differences that assist in the interpretation of aeolian processes. In summer, very ?ne sands mantle the dunescape and are the fraction that most affects the parameters of sorting and skewness. The sur?cial sedimentological character is one of subtle contrasts between the processes of grain winnowing and intergranular protection. The second and third moment measures are parameters that best demonstrate the spatial granulometric differences. Dune‐forming processes at Gurra‐Gurra have produced dune sands that have a very narrow range of grain size, which, in turn, re?ects textural and mineralogical maturity, and hence an extensive transport history. The statistical techniques employed in this study can also be used for the comparison of temporal (seasonal) sedimentological change, and for the granulometric analysis and association of process for dunes of different morpho‐types. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
46.
47.
48.
49.
Much of the current research on long‐term landscape evolution and drainage history in SE Australia is built in one way or another on the early work of Griffith Taylor. The controversy prompted by several attempts to incorporate Taylor's work in recent plate tectonics interpretations of the long‐term evolution of SE Australia highlights differences of opinion as to the appropriate methodologies for such investigations. These questions, including the issues of data sources in reconstructions of long‐term landscape history, testability of such reconstructions, and the relationship between the landscape history so reconstructed and larger‐scale, regional landscape histories, appear not to have been addressed in recent literature on geomorphological methodology. This literature notes the demise of critical rationalism and appears to espouse a strongly relativist viewpoint, which relies on the shared understanding among the discipline's practitioners as to what are appropriate data sources and tests for hypotheses of long‐term landscape evolution. This offers little hope for resolution of the current disputes about the evolution of the drainage systems of SE Australia, but puts the onus squarely on us, the practitioners, to develop shared understandings of the appropriate data sources and tests for our hypotheses and grand schemes of the type so favoured by Griffith Taylor.  相似文献   
50.
Miocene strata of the Shadow Valley Basin rest unconformably on the upper plate of the Kingston Range - Halloran Hills detachment fault system in the eastern Mojave desert, California. Basin development occurred in two broad phases that we interpret as a response to changes in footwall geometry. In southern portions of the basin, south of the Kingston Range, phase one began with near synchronous initiation of detachment faulting, volcanism and basin sedimentation shortly after 13.4 Ma. Between c. 13.4 and c. 10 Ma, concordantly bedded phase one strata were deposited onto the subsiding hangingwall of the detachment fault as it was translated 5–9 km south-westward with only limited internal deformation. Phase two (c. 10 to 8–5 Ma) is marked by extensional dismemberment of the detachment fault's upper plate along predominantly west-dipping normal faults. Phase two sediments were deposited synchronously with upper-plate normal faulting and unconformably overlie phase one deposits, displaying progressive shallowing in dip and intraformational onlap. Northern portions of the basin, in the Kingston Range, experienced a similar two-phase development compressed into a shorter interval of time. Here, phase one occurred between c. 13.4 and 12.8–12.5 (?) Ma, whereas phase two probably lasted for no more than a few 100000 years immediately prior to c. 12.4 Ma. Differences in the duration of basin development in and south of the Kingston Range apparently relate to position with respect to the detachment fault's breakaway; northern basin exposures overlie the upper plate adjacent to the breakaway (0–15 km) whereas southern basin exposures occur far from the breakaway (20–40 km). We interpret the phase one to phase two transition as recording breakup of the detachment fault's hangingwall during footwall uplift. We propose a model for supradetachment basin evolution in which early, concordantly bedded basin strata are deposited on the hangingwall as it translates intact above a weakly deforming footwall. With continuing extension, tectonic denudation along the detachment fault leads to an increasing flexural isostatic footwall response. We suggest that isostatic footwall uplift may drive internal breakup of the upper plate as the detachment fault is rotated to a shallow dip, mechanically unfavourable for simple upper-plate translation. Additionally, we argue that continuing hangingwall thinning during phase two places geometrical constraints on the timing, amount and, thus, rate of footwall uplift. Kinematically determined footwall uplift rates (0.5–4.5 mm/yr) are comparable with rates determined independently by thermochronological and geobarometric methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号