首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
测绘学   1篇
大气科学   4篇
地球物理   3篇
地质学   8篇
天文学   3篇
  2022年   1篇
  2021年   1篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2007年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
Deva K. Borah 《水文研究》2011,25(22):3472-3489
Currently, many watershed models are available that have various complexities, strengths, and weaknesses. The basic mathematical foundations of these mathematical models are often overlooked due to high demands on convenient applications with graphical user interfaces. Although this and other factors are important while selecting a model, the mathematical foundation should also be taken into account, as performance or efficiency and accuracy of a model depend on its simplicity or complexity. A comprehensive review of 14 storm event watershed models was conducted. Hydrologic procedures (rainfall excess, flow routing, and subsurface flow) of the models are presented and compiled. Among the procedures, flow routing has the most influence on model performances (speed and accuracy). Overland and channel flow routing procedures using different flow‐governing equations, having various approximations and solved by different methods, are compared based on their relative levels of physical bases, complexities, and expected accuracies in simulating the dynamics of water flow. Models using more mathematical terms in the flow‐governing equations are more physically based and expected to be more accurate than models using approximations, however, are more complex due to more intensive but approximate numerical schemes (inefficient). Models using approximate equations with analytical solutions may provide a balance between complexity and accuracy. The review and comparisons are useful to modellers, water resources managers, and researchers in understanding the basic foundations of the models and making informed selections for practical applications or further developments. Other factors such as data intensiveness, user friendliness, and resource requirements are also important considerations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
12.
Effects of paper mill wastes on the status of soil copper (Cu), manganese (Mn) and zinc (Zn) in and around 16 sites near a paper mill in Assam, North East India (26°07.485′ to 26°07.915′ N latitude and 92°12.706′ to 92°15.065′ E longitude), have been investigated in the present study. The six-step sequential extraction techniques revealed that the water-soluble fraction had the least contribution (below detectable limit to 3.24 mg kg?1 of Cu, 13.87 mg kg?1 of Mn and 1.25 mg kg?1 of Zn) towards soil contamination, irrespective of the metals evaluated. Chemical fractionation of Cu, Mn and Zn in majority of the sampling locations showed non-homogenous orders of contamination. Comparison of the magnitude of local and individual heavy metal contamination factors against global values showed that the places near the paper mill waste disposal site displayed higher potential risk from metal contamination. Furthermore, the mobility factor related to ecotoxicity of soil environment was found to be metal specific and depended not only on total metal concentration but also on the nature of metal in the order Mn > Cu > Zn.  相似文献   
13.
14.
The duration and extreme fluctuations of prolonged wet or dry spells associated with intraseasonal variability during extreme monsoon have devastating impacts on agrarian-based economy over Indian subcontinent. This study examines the potential predictability limit of intraseasonal transitions between rainy to non-rainy phases (i.e., active to break phases) or vice versa over central Indian region during extreme monsoon using very high-resolution (0.25° × 0.25°) daily rainfall datasets. The present study reveals that the transitions from both active to break and break to active conditions are more predictable by ~8 days during the weak monsoon (WM) years compared to the strong monsoon (SM) years. Such asymmetric behavior in the limit of predictability could be linked to the distinct differences in the large-scale seasonal mean background instability during SM and WM years. The achievability of such predictability is further evaluated in a state-of-the-art climate model, the climate forecast system (CFSv2). It is demonstrated that the observed asymmetry in predictability limit could be reproducible in the CFSv2 model, irrespective of its spatial resolution. This study provides impetus for useful dynamical prediction of wet/dry spells at extended range during the extreme monsoon years.  相似文献   
15.
We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon‐bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334–1345 cm?1 and 1591–1619 cm?1. The full‐width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.  相似文献   
16.
Indian summer monsoon rainfall prediction using artificial neural network   总被引:2,自引:1,他引:1  
Forecasting the monsoon temporally is a major scientific issue in the field of monsoon meteorology. The ensemble of statistics and mathematics has increased the accuracy of forecasting of Indian summer monsoon rainfall (ISMR) up to some extent. But due to the nonlinear nature of ISMR, its forecasting accuracy is still below the satisfactory level. Mathematical and statistical models require complex computing power. Therefore, many researchers have paid attention to apply artificial neural network in ISMR forecasting. In this study, we have used feed-forward back-propagation neural network algorithm for ISMR forecasting. Based on this algorithm, we have proposed the five neural network architectures designated as BP1, BP2, $\ldots, $ … , BP5 using three layers of neurons (one input layer, one hidden layer and one output layer). Detail architecture of the neural networks is provided in this article. Time series data set of ISMR is obtained from Pathasarathy et al. (Theor Appl Climatol 49:217–224 1994) (1871–1994) and IITM (http://www.tropmet.res.in/, 2012) (1995–2010) for the period 1871–2010, for the months of June, July, August and September individually, and for the monsoon season (sum of June, July, August and September). The data set is trained and tested separately for each of the neural network architecture, viz., BP1–BP5. The forecasted results obtained for the training and testing data are then compared with existing model. Results clearly exhibit superiority of our model over the considered existing model. The seasonal rainfall values over India for next 5 years have also been predicted.  相似文献   
17.
18.
Late intrusive Tukureswari granitoids (TKG) and the Barbhita granitoids (BBG) of Goalpara district in western Assam constitute an important component of the continental crust of the Shillong Plateau. Thus, the geochemical study of these two granitoids involving their origin, classification and petrogenetic significance would be a contribution towards a better understanding of the evolution of continental crust of the Shillong Plateau.The major oxide and trace element geochemistry reveals several genetic issues on these two granitoids. The I-type affinity of the TKG is indicated from the geochemical features such as high TiO2, P2O5 and K2O contents, low normative corundum (< 1%), high Na2O/K2O ratios, and low concentrations of Ni, Co and Cr. Further, enriched LREE-LILE and HFSE depletion, as well as the normal calc-alkaline nature of arc affinity (e.g., enhanced LILE abundance and low HFSE/LILE ratios) of the TKG indicate subduction-related magmatism. TheTKG are also categorized as a deep-level pluton, being enriched in LREE and depleted in total REE and HFSE (Y, Nb, Ta, Zr, Hf). The high La/Nb ratio (1.9–8.6), negative Nb and Ti anomalies also suggest orogenic related magmatism.On the other hand, the geochemistry of the BBG reveal a high Niggli Si and Mg values, slightly high normative corundum values (2.16–3.41), high Th/Ta, Y/Nb, La/Nb, K2O/Na2O, and Rb/Sr ratios. It also shows ASI, K, Rb, and U contents, prominent depletion of Nb, Sr and Ti on the primitive mantle-normalized multi-element spider diagrams and a low concentrations of Cu, Cr, V and Na2O (> 3.2%). All these geochemical characteristics provide strong evidences in support of a sedimentary parentage for Barbhita granitoids (BBG) and are dominantly of S-type.  相似文献   
19.
The geochemistry of the mafic xenoliths from Baspa valley of Himachal Pradesh, India has been investigated to characterize their protoliths on the basis of immobile elements, especially trace elements including REE. The mafic xenoliths occur within the Kinnaur Kailash granite (KKG) and their geochemistry show that they have tholeiitic nature with basaltic composition. Compositionally, they range from ‘depleted’ to ‘enriched’ MORB as observed on the binary diagrams of Ti vs V and Zr vs Ti and on ternary diagrams of Zr-Ti-Y and Th-Zr-N. Likewise, they match with various enriched or ‘transitional’ MORB types as evident from their Zr vs Nb binary plot. Their enriched character when compared with N-MORB, E-MORB and OIB rocks on chondrite and primordial mantle normalized plots reveals that it is intermediate to that of E-MORB and OIB. The geochemistry of the rocks suggest that the enriched components are probably derived by melting of a mantle source with E-MORB or OIB rather than due to the crustal contamination. The study carried out emphasize that the mafic xenoliths have developed in rift environment, and that they are not volcanic rocks of island arc related to subduction tectonics. It is visualized that the mafic xenoliths were formed as cumulate rocks from the tholeiitic magmas that were rising to lower crust levels in a rift environment, which at a later stage got entrapped as restitic material in the host Kinnaur Kailash granite formed in a collision environment, and propose a change of regime from rift related to collision environment prior to Palaeozoic period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号