首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   7篇
测绘学   2篇
大气科学   7篇
地球物理   56篇
地质学   34篇
海洋学   10篇
天文学   45篇
自然地理   10篇
  2022年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2014年   6篇
  2013年   8篇
  2012年   2篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   16篇
  2006年   11篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   10篇
  2001年   1篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
131.
Bifurcations are key geomorphological nodes in anabranching and braided fluvial channels, controlling local bed morphology, the routing of sediment and water, and ultimately defining the stability of their associated diffluence–confluence unit. Recently, numerical modelling of bifurcations has focused on the relationship between flow conditions and the partitioning of sediment between the bifurcate channels. Herein, we report on field observations spanning September 2013 to July 2014 of the three‐dimensional flow structure, bed morphological change and partitioning of both flow discharge and suspended sediment through a large diffluence–confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13 500 to 27 000 m3 s?1). Analysis of discharge and sediment load throughout the diffluence–confluence unit reveals that during the highest flows (Q = 27 000 m3 s?1), the downstream island complex is a net sink of sediment (losing 2600 ± 2000 kg s?1 between the diffluence and confluence), whereas during the rising limb (Q = 19 500 m3 s?1) and falling limb flows (Q = 13 500 m3 s?1) the sediment balance is in quasi‐equilibrium. We show that the discharge asymmetry of the bifurcation varies with discharge and highlight that the influence of upstream curvature‐induced water surface slope and bed morphological change may be first‐order controls on bifurcation configuration. Comparison of our field data to existing bifurcation stability diagrams reveals that during lower (rising and falling limb) flow the bifurcation may be classified as unstable, yet transitions to a stable condition at high flows. However, over the long term (1959–2013) aerial imagery reveals the diffluence–confluence unit to be fairly stable. We propose, therefore, that the long‐term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence–confluence unit, may be controlled by the dominant sediment transport regime of the system. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
132.
This article explores the length scales and statistical characteristics of form roughness along the outer banks of two elongate bends on a large meandering river through investigation of topographic variability of the bank face. The analysis also examines how roughness varies over the vertical height of the banks and when the banks are exposed subaerially and inundated during flood stage. Detailed data on the topography of the outer banks were obtained subaerially using terrestrial LiDAR during low flow conditions and subaqueously using multibeam echo sounding (MBES) during near‐bankfull conditions. The contributions of various length scales of topographic irregularity to roughness for subaerial conditions were evaluated for different elevation contours on the bank faces using Hilbert–Huang Transform (HHT) spectral analysis. Statistical characteristics for discrete areas on the bank faces were determined by calculating the root‐mean‐square of normal distances from a triangulated irregular network (TIN) surface. Results of the HHT analysis show that the characteristics of roughness along bank faces composed primarily of non‐cohesive sediment, and eroding into cropland, vary with bank elevation and exhibit a dominant range of roughness length scales (~15–50 m). However, bank faces composed predominantly of cohesive material and carved into a forested floodplain have relatively uniform topographic roughness characteristics over the vertical extent of the bank face and do not exhibit a dominant roughness length scale or range of length scales. Additionally, comparison between local surface roughness for subaerial versus subaqueous conditions shows that roughness decreases considerably when the banks are submerged, most likely because of the removal of vegetation and eradication of small‐scale erosional features in non‐cohesive bank materials by flow along the bank face. Thus, roughness appears to be linked to the hydraulic conditions affecting the bank, at least relative to conditions that develop when banks are exposed subaerially. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
133.
We conducted a laboratory study of the joint elastic‐electrical properties of sixty‐three brine‐saturated sandstone samples to assess the likely impact of differential pressure (confining minus pore fluid pressures) in the range 8–60 MPa on the joint interpretation of marine seismic and controlled‐source electromagnetic survey data. The samples showed a wide range of petrophysical properties representative of most sandstone reservoirs. We found that a regression equation comprising both a constant and an exponential part gave a good fit to the pressure dependence of all five measured geophysical parameters (ultrasonic P‐ and S‐wave velocity, attenuation and electrical resistivity). Electrical resistivity was more pressure‐sensitive in clay‐rich sandstones with higher concentrations of low aspect ratio pores and micropores than in clean sandstones. Attenuation was more pressure‐sensitive in clean sandstones with large open pores (macropores) than in clay‐rich sandstones. Pore shape did not show any influence on the pressure sensitivity of elastic velocity. As differential pressure increases, the effect of the low aspect ratio pores and micropores on electrical resistivity becomes stronger than the effect of the macropores on attenuation. Further analysis of correlations among the five parameters as a function of pressure revealed potentially diagnostic relationships for geopressure prediction in reservoir sandstones.  相似文献   
134.
We measured in the laboratory ultrasonic compressional and shear‐wave velocity and attenuation (0.7–1.0 MHz) and low‐frequency (2 Hz) electrical resistivity on 63 sandstone samples with a wide range of petrophysical properties to study the influence of reservoir porosity, permeability and clay content on the joint elastic‐electrical properties of reservoir sandstones. P‐ and S‐wave velocities were found to be linearly correlated with apparent electrical formation factor on a semi‐logarithmic scale for both clean and clay‐rich sandstones; P‐ and S‐wave attenuations showed a bell‐shaped correlation (partial for S‐waves) with apparent electrical formation factor. The joint elastic‐electrical properties provide a way to discriminate between sandstones with similar porosities but with different clay contents. The laboratory results can be used to estimate sandstone reservoir permeability from seismic velocity and apparent formation factor obtained from co‐located seismic and controlled source electromagnetic surveys.  相似文献   
135.
136.
137.
138.
139.
140.
Based on a detailed study of Pc3 events at an array between L = 1.5 and 3 in Central Europe, the authors found quick changes between upstream waves (UW, i.e. pulsation directly driven by UW) and field line resonance (FLR, i.e. azimuthal oscillations of geomagnetic field lines). The alternation of the two types is especially characteristic (and the UW part stronger) if the interplanetary magnetic field (IMF) is highly variable. Events due to field line resonance may have a structure consisting of multiple lines with frequencies differing by about 10%, corresponding to neighbouring shells of field lines separated by about 100 km at the surface. This coincides with previous findings (about 10% at a meridional distance of 80 km). The frequency of the UW type is well correlated with the frequency of waves in the interplanetary medium. Additionally, there are signals of unidentified origin which also seem to be influenced by IMF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号