首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   18篇
  国内免费   6篇
测绘学   6篇
大气科学   20篇
地球物理   86篇
地质学   96篇
海洋学   25篇
天文学   103篇
自然地理   32篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   15篇
  2015年   13篇
  2014年   10篇
  2013年   20篇
  2012年   12篇
  2011年   21篇
  2010年   18篇
  2009年   21篇
  2008年   13篇
  2007年   24篇
  2006年   17篇
  2005年   12篇
  2004年   14篇
  2003年   9篇
  2002年   14篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   11篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   8篇
  1984年   6篇
  1983年   5篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有368条查询结果,搜索用时 156 毫秒
291.
Flares accompanied by type II meter radio bursts that occurred in plages with no visible spots are examined in this paper. There have been found 12 such spotless flares observed in the period of January 1981–August, 1990. Six out of all the flares may be said to have not been associated with any filament activation or disruption. A few of these flares have shown features of major events. The study suggests that a filament activation seems not to be the crucial factor for the occurrence of major flares in regions with no visible spots.  相似文献   
292.
It is shown here that many problems of libration in celestial mechanics can be reduced to a perturbation of anintermediary defined by the Hamiltonian $$F = B\left( y \right) + 2\mu ^2 A\left( y \right)f\left( x \right).$$ This generalization of the Ideal Resonance Problem, with a periodic functionf(x) replacing sin2 x, is solved here toO(μ 2) by an algorithm that is essentially the same as the one used in the original formulation. The solution is of the formx=x(u), u=u(t), y=y(x), with the functionx(u) commonly involving the inversion of a hyperelliptic integralu(x), evaluated by quadrature. Libration may be simple or multiple, depending on the nature of the functionf(x) and on the initial conditions. Double libration is illustrated here by the horseshoe-shaped orbits enclosing two libration centers.  相似文献   
293.
The regularizing function ψ(x) in the theory of resonance removes the singularities discovered by Poincaré (1893), of the form 1/x, at theturning points x 1 andx 2 of thecritical argument x, librating in the rangex 1xx 2. This function has been explicitly introduced into the HamiltonianF 0 of the Ideal Resonance Problem in the author's recent paper (1977) in order to remove the singularities in the second-order perturbations. It is shown here that this procedure can be extended toall orders. ThenF 0 can be put into the form $$F_0 = B(y) + \Psi (x)$$ where ψ is thecomplete regularizing function, removing theclassical singularity of thesmall divisor, in addition to the singularities of Poincaré.  相似文献   
294.
A three-dimensional hydrodynamic model has been developed to simulate water mass circulation in estuarine systems. This model is based on the primitive equation in Cartesian coordinates with a terrain-following structure, coupled with a Mellor–Yamada 2.5 turbulence scheme. A fractional-step method is applied and the subset of equations is solved with finite volume and finite element methods. A dry–wet process simulates the presence of the tidal flat at low water. River inputs are introduced using a point-source method. The model was applied to a partially mixed, macrotidal, temperate estuary: Southampton Water, UK. The model is validated by comparisons with sea surface elevation, ADCP measurements and salinity data collected in 2001. The mean spring range 2(M2 + S2) and the mean neap range 2(M2 − S2) are modelled with an error relative to observation of 12 and 16%, respectively. The unique tidal regime of the system with the presence of the ‘young flood stand’ corresponding to the slackening conditions occurring at mid flood and ‘double high water’ corresponding to an extension of the slackening conditions at high tide is accurately reproduced in the model. The dynamics of the modelled mean surface and bottom velocity closely match the ADCP measurements during neap tides (rms of the difference is 0.09 and 0.01 m s−1 at the bottom and at the surface, respectively), whereas at spring the difference is greater (rms of the difference is 0.25 and 0.20 m s−1 at bottom and surface, respectively). The spatial and temporal variation of the degree of stratification as indicated by salinity distributions compares well with observations.  相似文献   
295.
In previous publications the author has constructed a long-periodic solution of the problem of the motion of the Trojan asteroids, treated as the case of 1:1 resonance in the restricted problem of three bodies. The recent progress reported here is summarized under three headings:
  1. The nature on the long-periodic family of orbits is re-examined in the light of the results of the numerical integrations carried out by Deprit and Henrard (1970). In the vicinity of the critical divisor $$D_k \equiv \omega _1 - k\omega _2 ,$$ not accessible to our solution, the family is interrupted by bifurcations and shortperiodic bridges. Parametrized by the normalized Jacobi constant α2, our family may, accordingly, be defined as the intersection of admissible intervals, in the form $$L = \mathop \cap \limits_j \left\{ {\left| {\alpha - \alpha _j } \right| > \varepsilon _j } \right\};j = k,k + 1, \ldots \infty .$$ Here, {αj(m)} is the sequence of the critical αj corresponding to the exactj: 1 commensurability between the characteristic frequencies ω1 and ω2 for a given value of the mass parameterm. Inasmuch as the ‘critical’ intervals |α?αj|<εj can be shown to be disjoint, it follows that, despite the clustering of the sequence {αj} at α=1, asj→∞, the family extends into the vicinity of the separatrix α=1, which terminates the ‘tadpole’ branch of the family.
  2. Our analysis of the epicyclic terms of the solution, carrying the critical divisorD k , supports the Deprit and Henrard refutation of the E. W. Brown conjecture (1911) regarding the termination of the tadpole branch at the Lagrangian pointL 3. However, the conjecture may be revived in a refined form. “The separatrix α=1 of the tadpole branch spirals asymptotically toward a limit cycle centered onL 3.”
  3. The periodT(α,m) of the libration in the mean synodic longitude λ in the range $$\lambda _1 \leqslant \lambda \leqslant \lambda _2$$ is given by a hyperelliptic integral. This integral is formally expanded in a power series inm and α2 or \(\beta \equiv \sqrt {1 - \alpha ^2 }\) .
The large amplitude of the libration, peculiar to our solution, is made possible by the mode of the expansion of the disturbing functionR. Rather than expanding about Lagrangian pointL 4, with the coordinatesr=1, θ=π/3, we have expandedR about the circler=1. This procedure is equivalent to analytic continuation, for it replaces the circle of convergence centered atL 4 by an annulus |r?1|<ε with 0≤θ<2π.  相似文献   
296.
This brief survey of the author's contribution to the theory of resonance in celestial mechanics begins with the genesis of the Small Divisor. The fundamental distinction between theshallow anddeep resonance is illustrated by the 52 Jupiter-Saturn and the 3-2 Neptune-Pluto resonances in the planetary system.The search for aglobal solution through a removal of the small divisor is put into a historical perspective through the work of Laplace, Bohlin, and Poincaré. The author's own contribution to the methodology is the formulation and the solution of the Ideal Resonance Problem. If the resonance issimple, all the singularities in the solution are removed by means of aregularizing function. On the other hand, if the resonance isdouble, the second critical divisor seems irremovable, and a global solution may be precluded.Invited paper, IAU 1979, Commission 7, Montreal, Canada.  相似文献   
297.

Well clogging was studied at an aquifer storage transfer and recovery (ASTR) site used to secure freshwater supply for a flower bulb farm. Tile drainage water (TDW) was collected from a 10-ha parcel, stored in a sandy brackish coastal aquifer via well injection in wet periods, and reused during dry periods. This ASTR application has been susceptible to clogging, as the TDW composition largely exceeded most clogging mitigation guidelines. TDW pretreatment by sand filtration did not cause substantial clogging at a smaller ASR site (2 ha) at the same farm. In the current (10 ha) system, sand filtration was substituted by 40-μm disc filters to lower costs (by 10,000–30,000 Euro) and reduce space (by 50–100 m2). This measure treated TDW insufficiently and injection wells rapidly clogged. Chemical, biological, and physical clogging occurred, as observed from elemental, organic carbon, 16S rRNA, and grain-size distribution analyses of the clogging material. Physical clogging by particles was the main cause, based on the strong relation between injected turbidity load and normalized well injectivity. Periodical backflushing of injection wells improved operation, although the disc filters clogged when the turbidity increased (up to 165 NTU) during a severe rainfall event (44 mm in 3 days). Automated periodical backflushing, together with regulating the maximum turbidity (<20 NTU) of the TDW, protected ASTR operation, but reduced the injected TDW volume by ~20–25%. The studied clogging-prevention measures collectively are only viable as an alternative for sand filtration when the injected volume remains sufficient to secure the farmer’s needs for irrigation.

  相似文献   
298.
A modified version of the 3D finite-element hydrostatic model QUODDY-4 is used to quantify the changes in the dynamics and energetics of the M 2 surface tide in the North European Basin, induced by the spatial variability in bottom roughness. This version differs from the original one, as it introduces a module providing evaluation of the drag coefficient in the bottom boundary layer (BBL) and by accounting for the equilibrium tide. The drag coefficient is found from the resistance laws for an oscillatory rotating turbulent BBL over hydrodynamically rough and incompletely rough underlying surfaces, describing how the wave friction factor as well as other resistance characteristics depend on the dimensionless similarity parameters for the BBL. It is shown that the influence of the spatial variability in bottom roughness is responsible for some specific changes in the tidal amplitudes, phases, and the maximum tidal velocities. These changes are within the model noise, while the changes in the averaged (over a tidal cycle) horizontal wave transport and the averaged dissipation of barotropic tidal energy may be of the same orders of magnitude as are the above energetic characteristics as such. Thus, contrary to present views, ignoring the spatial variability in bottom roughness at least in the North European Basin is only partially correct: it is valid for the tidal dynamics, but is liable to break down for the tidal energetics.  相似文献   
299.
To predict the earthquake response of saturated porous media it is essential to correctly simulate the generation, redistribution, and dissipation of excess pore water pressure during and after earthquake shaking. To this end, a reliable numerical tool requires a dynamic, fully coupled formulation for solid–fluid interaction and a versatile constitutive model. Presented in this paper is a 3D finite element framework that has been developed and utilized for this purpose. The framework employs fully coupled dynamic field equations with a upU formulation for simulation of pore fluid and solid skeleton interaction and a SANISAND constitutive model for response of solid skeleton. After a detailed verification and validation of the formulation and implementation of the developed numerical tool, it is employed in the seismic response of saturated porous media. The study includes examination of the mechanism of propagation of the earthquake-induced shear waves and liquefaction phenomenon in uniform and layered profiles of saturated sand deposits.  相似文献   
300.
Here we provide a detailed qualitative and quantitative insight on recent sediment composition and facies distribution of a cold-water coral (CWC) mound using the example of the Propeller Mound on the Irish continental margin (Hovland Mound Province, Porcupine Seabight). Five facies types on Propeller Mound are defined: (1) living coral framework, (2) coral rubble, (3) dropstone, (4) hardground, representing the on-mound facies, and (5) hemipelagic sediment facies, which describes the off-mound area. This facies definition is based on already published video-data recorded by Remotely Operated Vehicle (ROV), photo-data of gravity cores, box cores, and dredges from sediment surfaces as well as on the composition of the sediment fraction coarser than 125 μm, which has been analyzed on five selected box cores. Sediment compositions of the living coral framework and coral rubble facies are rather similar. Both sediment types are mainly produced by corals (34 and 35 wt%, respectively), planktonic foraminifers (22 and 29 wt%, respectively), benthic foraminifers (both 7 wt%), and molluscs (21 and 10 wt%, respectively), whereas the living coral framework characteristically features additional brachiopods (6 wt%). Hardgrounds are well-lithified coral rudstones rich in coral fragments (>30 surf%), foraminifers, echinoderms, and bivalves. The dropstone facies and the hemipelagic sediment typically carry high amounts of lithoclasts (36 and 53 wt%, respectively) and planktonic foraminifers (35 and 32 wt%, respectively); however, their faunal diversity is low compared with the coral-dominated facies (12 and <2 wt% coral fragments, 7 and 6 wt% benthic foraminifers, and 4 and 0 wt% balanids). Using the maximum likelihood algorithm within ArcGIS 9.2, spatial prediction maps of the previously described mound facies are calculated over Propeller Mound and are based on mound morphology parameters, ground-truthed with the sedimentary and faunal information from box cores, photographs, and video-data. This method is tested for the first time for CWC ecosystems and provides areal estimates of the predicted facies, as well as suggests further occurrences of living coral frameworks, coral rubble, and dropstones, which are not discovered in the area yet. Thus, sediment composition analysis combined with facies prediction mapping might provide a potential new tool to estimate living CWC occurrences and sediment/facies distributions on CWC mounds, which is an important prerequisite for budget calculations and definition of marine protected areas, and which will improve our understanding of CWC mound formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号