首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
测绘学   1篇
地球物理   4篇
地质学   28篇
海洋学   3篇
天文学   34篇
自然地理   2篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   7篇
  2002年   1篇
  2001年   6篇
  2000年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1988年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1972年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
21.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   
22.
A detailed study of two major solar flares that occurred in Group 10786 at the time of its disappearance behind the western limb is presented. The flares of July 14, 2005 were previously studied fairly poorly, as no RHESSI hard X-ray observations were available for themaxima of the twomost powerful of these flares. Observations carried out using the HEND equipment (on the Mars Odyssey spacecraft) developed at the Institute for Space Research in Moscow are used here to fill this gap. In the first flare, an intense, impulsive burst occurred at 07:23 UT, about 1.5 h after the onset of a weak, prolonged event. While processes in the neighborhood of the northern spot dominated in the flares of July 5–9, a powerful impulsive energy release on July 14 emerged when the flare process that originated in the North reached the southern spot. Our analysis of the flare activity of this medium-sized group reveals a gradual enhancement of the flare activity and a strong interaction between the acceleration above the magnetic-field neutral line and in the immediate vicinity of the spots. At the time of the culmination of the flare activity in the group on July 13 and 14, the pattern of nonstationary processes changes: fast coronal mass ejections form after a series of impulsive energy-release events. Spacecraft observations of the burst of July 14 after 11 UT at points separated in longitude (on RHESSI and Mars Odyssey) revealed clear anisotropy of the flare emission at energies exceeding 80 keV.  相似文献   
23.
Abstract— The near‐Earth asteroid rendezvous (NEAR)‐Shoemaker remote‐sensing x‐ray/gamma‐ray spectrometer (XGRS) completed more than a year of operation in orbit and on the surface of 433 Eros. Elemental compositions for a number of regions on the surface of Eros have been derived from analyses of the characteristic x‐ray and gamma‐ray emission spectra. The NEAR XGRS detection system was included as part of the interplanetary network (IPN) for the detection and localization of gamma‐ray bursts (GRBs). Preliminary results for both the elemental composition of the surface of Eros and the detection of GRBs have been obtained. In addition to the science results, the design and operation of the NEAR XGRS is considered. Significant information important for the design of future remote sensing XGRS systems has been obtained and evaluated. We focus on four factors that became particularly critical during NEAR: (1) overall spacecraft design, (2) selection of materials, (3) increase of the signal‐to‐noise ratio and (4) knowledge of the incident solar x‐ray spectrum.  相似文献   
24.
We report results of the analysis of the data on global mapping of neutron fluxes from the Martian surface, which have been obtained during the first ten months of measurements carried out by the Russian high-energy neutron detector HEND mounted aboard the AmericanMars Odysseyorbiter. This analysis allowed us to separate regions where free water (in ice form) prevailed in the surface layer (with a thickness of up to 2 m) of the Martian ground from regions where physically and chemically bound ground water was most likely to be the dominant form of water. The global mapping of regions with increased ice content in the ground-surface layer revealed a direct correlation with regions of polygonal terrains morphologically similar to terrestrial polygonal forms of permafrost origin. The potential content of bound water forms in the ground of circumpolar areas of the planet is also estimated.  相似文献   
25.
Analysis of the distribution of the epithermal and fast neutron fluxes from the Martian surface within the ±60° latitude zone measured by the High-Energy Neutron Detector (HEND) from mid-February through mid-June 2002 has revealed regional neutron-flux variations outside the zones of climatic effects, which appear to be attributable to the presence of chemically bound water. With the exception of the epithermal neutron fluxes in Arabia and southwest of Olympus Mons (Medusae Fossae), these variations show no correlation with the geologic structure of the terrain at the level of global geologic maps. The lack of such a correlation probably implies that to the formation depth of the epithermal neutron flux (1–2 m), let alone the fast neutron flux (20–30 cm), much of Mars is covered by a surface material that bears little relation in composition to local bedrocks. Clearly, this is an aeolian cover whose fine-grain component was mixed by dust storms in the geologic time on the scale of large regions. The decrease in the flux of epithermal neutrons in Arabia and southwest of Olympus Mons (Medusae Fossae) appears to be attributable to an enhanced concentration of materials containing chemically bound water (clay minerals, palagonite, hydroxides, and hydrosalts) in the surface layers of these regions.  相似文献   
26.
A geologic analysis of 274 images acquired by the high-resolution MOC camera onboard the Mars Global Surveyor spacecraft within the Arabia Terra low neutron flux anomaly (which is indicative of an anomalously high abundance of hydrogen: up to 16 wt % of the equivalent amount of water) was performed. Correlation between the enhanced abundance of equivalent water with the presence of dust on the surface was found. Since dust plays a key role in condensation of water from the atmosphere, we suppose that the anomalies could result from the retention of atmospheric moisture. To analyze this suggestion, we performed a theoretical modeling that allowed us to map the planetary-scale distributions of several meteorological parameters responsible for the atmospheric moisture condensation. Two antipodal regions coinciding rather well with the Arabia Terra anomaly and the geographically antipodal anomaly southwest of Olympus Mons were found in the maps. This suggests that the anomalies are rather recent than ancient formations. They were probably formed by a sink of moisture from the atmosphere in the areas where present meteorological conditions support this sink. Geological parameters, primarily the presence of dust, only promote this process. We cannot exclude the possibility that the Martian cryosphere, rather than the atmosphere, supplied the studied anomalies with moisture during their formation: the thermodynamic conditions in the anomaly areas could block the moisture flux from the Martian interior in the upper regolith layer. The moisture coming from the atmosphere or from the interior is likely held as chemically bound water entering into the structure of water-bearing minerals (probably, hydrated magnesium sulfates) directly from the vapor; or the moisture precipitates as frost, penetrates into microfissures, and then is bound in minerals. Probably, another geologic factor—the magnesium sulfate abundance—works in the Arabia Terra anomaly.  相似文献   
27.
Mercury holds answers to several critical questions regarding the formation and evolution of the terrestrial planets. These questions include the origin of Mercury's anomalously high ratio of metal to silicate and its implications for planetary accretion processes, the nature of Mercury's geological evolution and interior cooling history, the mechanism of global magnetic field generation, the state of Mercury's core, and the processes controlling volatile species in Mercury's polar deposits, exosphere, and magnetosphere. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission has been designed to fly by and orbit Mercury to address all of these key questions. After launch by a Delta 2925H-9.5, two flybys of Venus, and two flybys of Mercury, orbit insertion is accomplished at the third Mercury encounter. The instrument payload includes a dual imaging system for wide and narrow fields-of-view, monochrome and color imaging, and stereo; X-ray and combined gamma-ray and neutron spectrometers for surface chemical mapping; a magnetometer; a laser altimeter; a combined ultraviolet–visible and visible-near-infrared spectrometer to survey both exospheric species and surface mineralogy; and an energetic particle and plasma spectrometer to sample charged species in the magnetosphere. During the flybys of Mercury, regions unexplored by Mariner 10 will be seen for the first time, and new data will be gathered on Mercury's exosphere, magnetosphere, and surface composition. During the orbital phase of the mission, one Earth year in duration, MESSENGER will complete global mapping and the detailed characterization of the exosphere, magnetosphere, surface, and interior.  相似文献   
28.
During its three flybys of Mercury, the MESSENGER spacecraft made the first detection of gamma-ray emission from the planet's surface. With a closest approach distance of ∼200 km, the flybys provided an opportunity to measure elemental abundances of Mercury's near-equatorial regions, which will not be visited at low altitude during MESSENGER's orbital mission phase. Despite being limited by low planetary photon flux, sufficient counts were accumulated during the first two flybys to estimate bounds on abundances for some elements having relatively strong gamma-ray spectral peaks, including Si, Fe, Ti, K, and Th. Only for Si is the standard deviation σ sufficiently small to conclude that this element was detected with 99% confidence. Iron and potassium are detected at the 2−σ (95% confidence) level, whereas only upper bounds on Ti and Th can be determined. Relative to a Si abundance assumed to be 18 weight percent (wt%), 2−σ upper bounds have been estimated as 9.7 wt% for Fe, 7.0 wt% for Ti, 0.087 wt% for K, and 2.2 ppm for Th. The relatively low upper bound on K rules out some previously suggested models for surface composition for the regions sampled. Upper bounds on Fe/Si and Ti/Si ratios are generally consistent with Ti and Fe abundances estimated from the analysis of measurements by the MESSENGER Neutron Spectrometer during the flybys but are also permissive of much lower concentrations.  相似文献   
29.
Observations of the hard X-ray and radio event of October 27, 2002 are analyzed. This flare was observed from near-Martian orbit by the HEND instrument developed at the Space Research Institute of the Russian Academy of Sciences and installed on the Mars Odyssey satellite. Although this powerful flare was observed far over the eastern solar limb, the extended source associated with the flare was detected by RHESSI at energies up to about 60 keV. The eruptive event was observed in the radio at the Nobeyama Radio Observatory. The properties of the X-ray radiation are used to calculate the spectrum of the accelerated electrons responsible for the observed radiation, assuming that the target is thick for a Martian observer and thin for a terrestrial observer. The results are compared with the results of radio observations. The conditions for electron propagation in the corona are discussed.  相似文献   
30.
Abstract— A large (≥4.5 × 7 × 4 mm), igneous-textured clast in the Bovedy (L3) chondrite is notable for its high bulk SiO2 content (57.5 wt%). The clast consists of normally zoned orthopyroxene (83.8 vol%), tridymite (6.2 %), an intergrowth of feldspar (5.8 %) and sodic glass (3.1 %), pigeonite (1.0 %), and small amounts of chromite (0.2 %), augite, and Fe, Ni-metal; it is best described as a silica-rich orthopyroxenite. The oxygen-isotopic composition of the clast is similar, but not identical, to Bovedy and other ordinary chondrites. The clast has a superchondritic Si/Mg ratio, but has Mg/(Mg + Fe) and Fe/Mn ratios that are similar to ordinary chondrite silicate. The closest chemical analogues to the clast are radial-pyroxene chondrules, diogenites, pyroxene-silica objects in ordinary chondrites, and silicates in the IIE iron meteorite Weekeroo Station. The clast crystallized from a siliceous melt that cooled fast enough to prevent complete attainment of equilibrium but slow enough to allow nearly complete crystallization. The texture, form, size and composition of the clast suggest that it is an igneous differentiate from an asteroid or planetesimal that formed in the vicinity of ordinary chondrites. The melt probably cooled in the near-surface region of the parent object. It appears that in the source region of the clast, metallic and silicate partial melt were largely-to-completely lost during a relatively low degree of melting, and that during a higher degree of melting, olivine and low-Ca pyroxene separated from the remaining liquid, which ultimately solidified to form the clast. While these fractionation steps could not have all occurred at the same temperature, they could have been accomplished in a single melting episode, possibly as a result of heating by radionuclides or by electromagnetic induction. Fractionated magmas can also account for other Si-rich objects in chondrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号