首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   16篇
  国内免费   5篇
测绘学   29篇
大气科学   32篇
地球物理   96篇
地质学   140篇
海洋学   43篇
天文学   104篇
自然地理   43篇
  2022年   3篇
  2021年   3篇
  2020年   7篇
  2019年   6篇
  2018年   9篇
  2017年   6篇
  2016年   5篇
  2015年   10篇
  2014年   10篇
  2013年   46篇
  2012年   7篇
  2011年   20篇
  2010年   19篇
  2009年   27篇
  2008年   24篇
  2007年   25篇
  2006年   32篇
  2005年   19篇
  2004年   16篇
  2003年   10篇
  2002年   14篇
  2001年   10篇
  2000年   14篇
  1999年   9篇
  1998年   14篇
  1997年   5篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1978年   14篇
  1977年   4篇
  1974年   2篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1967年   2篇
  1948年   2篇
排序方式: 共有487条查询结果,搜索用时 156 毫秒
91.
We present JHKL ' photometry of a complete sample of steep-spectrum radio-loud quasars from the revised 3CR catalogue in the redshift range 0.65 z <1.20. After correcting for contributions from emission lines and the host galaxies, we investigate their spectral energy distributions (SEDs) around 1 μm. About 75 per cent of the quasars are tightly grouped in the plane of optical spectral index, α opt, versus near-infrared spectral index, α IR, with the median value of α opt close to the canonical value, and the median α IR slightly flatter. We conclude that the fraction of moderately obscured, red quasars decreases with increasing radio power, in accordance with the 'receding torus' model which can also explain the relatively flat median near-infrared spectra of the 3CR quasars. Two of the red quasars have inverted infrared spectral indices, and we suggest that their unusual SEDs might result from a combination of dust-scattered and transmitted quasar light.  相似文献   
92.
93.
The mid-Pleistocene transition (MPT, c. 1.2 to 0.5 Ma) records fundamental changes in Earth's climate state, where low-amplitude 41-kyr obliquity-dominated cycles gave way progressively to the high-amplitude, quasiperiodic (c. 100-kyr) fluctuations that characterize the later Pleistocene and Holocene. We use wavelet analysis on the LR04 δ^l8O benthic foraminiferal stack to confirm low-frequency power as early as 1.25-1.20 Ma, determine the persistence of obliquity-dominated cyclicity through and beyond the MPT, and reveal new levels of complexity in climate evolution.  相似文献   
94.
We investigate the composition of 63 C2-C10 nonmethane hydrocarbons (NMHCs), methane (CH4) and carbon monoxide (CO), in Jeddah, Mecca, and Madina (Saudi Arabia), in Lahore, (Pakistan), and in Singapore. We established a database with which to compare and contrast NMHCs in regions where ambient levels and emissions are poorly characterized, but where conditions are favorable to the formation of tropospheric ozone, and where measurements are essential for improving emission inventories and modeling. This dataset will also serve as a base for further analysis of air pollution in Western Saudi Arabia including, but not limited to, the estimation of urban emissions and long range pollution transport from these regions. The measured species showed enhanced levels in all Saudi Arabian cities compared to the local background but were generally much lower than in Lahore. In Madina, vehicle exhaust was the dominant NMHC source, as indicated by enhanced levels of combustion products and by the good correlation between NMHCs and CO, while in Jeddah and Mecca a combination of sources needs to be considered. Very high NMHC levels were measured in Lahore, and elevated levels of CH4 in Lahore were attributed to natural gas. When we compared our results with 2010 emissions from the MACCity global inventory, we found discrepancies in the relative contribution of NMHCs between the measurements and the inventory. In all cities, alkenes (especially ethene and propene) dominated the hydroxyl radical (OH) reactivity (k OH) because of their great abundance and their relatively fast reaction rates with OH.  相似文献   
95.
Several limnological and paleolimnological investigations have linked enhanced atmospheric nitrogen (N) deposition to nutrient enrichment and increased primary production. The Athabasca Oil Sands Region (AOSR) in northeast Alberta, Canada is a significant source of N emissions, particularly since development intensified during the 1990s, and recent paleolimnological investigations provide evidence of increased lake production in adjacent areas subject to enhanced N deposition. The AOSR, however, has also experienced atmospheric warming since ca. AD 1900, and therefore the relative effects of nutrient deposition and climate changes on lake production remain unclear. We undertook a factorial-design paleolimnological assessment of 16 lakes in northwest Saskatchewan to quantify changes in abundance and species composition of scaled chrysophytes over the past 100 years. Study sites included both N-limited and P-limited lakes within control regions, as well as lakes that receive enhanced N deposition from the AOSR. We hypothesized that a change in algal communities within N-limited AOSR-impacted lakes, without concurrent changes in the other lake groups, would suggest AOSR-derived N as a driver of enhanced primary production. Instead, marked increases in concentrations of scaled chrysophytes, mainly Mallomonas crassisquama, occurred in the recent sediments in cores from all four lake groups (N-limited vs. P-limited, impacted vs. control), suggesting that regional climate change rather than N deposition was the paramount process enhancing chrysophyte production. Because chrysophyte abundances tended to be higher in deep, lower-pH lakes, and chrysophyte time series were fit best by lake-specific generalized additive models, we infer that climate effects may have been mediated by additional catchment and/or lake-specific processes.  相似文献   
96.
Changes in groundwater tables brought about by sea level increases in the Delaware River Basin (near Philadelphia) about 2,500 years B.P., initiated wetland development at the Princeton-Jefferson Branch of the Woodbury Creek marshes. Continual increases in sea level pushed groundwater tables further upward, and by approximately 800 years B.P., groundwater tables had risen to the upper limits for woody vegetation at the site. By the time European settlers arrived in the late 1600s nontidal sedge marshes dominated the site. Upon arriving colonists began manipulating the hydrology of the Delaware River Basin by constructing dams and dikes for flood control. Soon many areas were cut off from direct contact with the river. During the next one and one-half centuries sea level continued to rise, and because of channelization of the Delaware River the tidal range doubled. During the early 1900s flood control structures began to fail allowing tidal waters to periodically inundate these protected sites. At that time the site was dominated by a Quercus-Castanea swamp forest with hummocks of Cyperaceae interspersed throughout. In 1940 the dike surrounding the Princeton-Jefferson marsh collapsed and the site was immediately inundated with tidal waters on a regular basis. Within a short period of time tidal freshwater marsh developed and has continued to the present day. It is clear from this investigation that changes in hydrology brought about by cultural modifications have been directly responsible for the ontogeny of this tidal marsh. The influence cultural impacts have had on wetland development at the Princeton-Jefferson marsh suggest that it may be necessary to reevaluate the extent humans have modified the development and structure of the present day upper Delaware River estuary. Although the ability to discern historic vegetation zonation patterns is limited, these marshes can record individual events that have shaped these wetlands through time. Due to differences in the structure of the plant community, rates of decomposition, and processes of accretion, Redfield’s model (1972) of tidal salt marsh development does not apply to the Princeton-Jefferson marsh. Along a submerging coast, the development of tidal freshwater marsh in many estuaries may be necessary for the establishment of brackish and salt marshes by creating and maintaining a suitable habitat for the eventual colonization of more salt-tolerant plant species. The roles these wetlands have played in the development of the estuaries has been underestimated in the past.  相似文献   
97.
Summary Surface reflectance factors from bare field soil were measured to determine the relationship between surface soil water content and spectral reflectance. Reflectance in the six reflective Thematic Mapper (TM) bands plus a 1.15 to 1.30 µm bandpass (referred to as MMR 5) was measured using a groundbased radiometer across a soil water gradient provided by a line source sprinkler system. A spectral index of soil brightness (Brightness) derived using the Gram-Schmidt process and utilizing reflectance information was calculated for each band and for combinations of bands. The results of this study show that TM band 7 (2.05–2.30 µm) provided improved estimates of surface soil water content (0–0.5 cm depth) over estimates using reflectance information from all seven bands. Good correlations were also found between band ratio spectral indices of TM 5 (1.55–1.75 µm) / TM 7, MMR 5/TM 7, and MMR 5/TM 5 and surface soil water content. Results indicate that surface reflectance factors within bandpasses that partially overlap water absorption regions, such as TM 7, are most highly correlated with surface soil moisture. Band ratios utilizing a bandpass partially overlapping a water absorption region such as TM 7 and a non-water-absorbing bandpass such as MMR 5 yield close correlations with surface soil water content.Contribution from the Arizona Agricultural Experiment Station, Tucson, AZ 85721. Journal Paper No. 7040.With 6 Figures  相似文献   
98.
Buoyancy input as fresh water exerts a stratifying influence in estuaries and adjacent coastal waters. Predicting the development and breakdown of such stratification is an inherently more difficult problem than that involved in the analogous case of stratification induced by surface heating because the buoyancy input originates at the lateral boundaries. In the approach adopted here, we have adapted the energy considerations used in the surface heating problem to describe the competition between the stabilizing effect of fresh water and the vertical mixing brought about by tidal and wind stirring. Freshwater input induces horizontal gradients which drive the estuarine circulation in which lighter fluid at the surface is moved seaward over heavier fluid moving landward below. This contribution to stratification is expected to vary in time as the level of turbulence varies over the tidal cycle. The density gradient also interacts directly with the vertical shear in the tidal current to induce a periodic input to stratification which is positive on the ebb phase of the tide. Comparison of this input with the available stirring energy leads to a simple criterion for the existence of strain-induced stratification. Observations in a region of Liverpool Bay satisfying this criterion confirm the occurrence of a strong semidiurnal variation in stratification with complete vertical mixing apparent around high water except at neap tides when more permanent stratification may develop. A simulation of the monthly cycle based on a model including straining, stirring, and the estuarine circulation is in qualitative agreement with the main features of the observations.  相似文献   
99.
100.
Ship and satellite observations taken over the last thirty years show that mesoscale patterns of sea surface temperature (SST) in the California Current System are consistently found throughout the year and usually occur in approximately the same geographical locations. Typically, these patterns are more pronounced in fall/winter than in spring/summer. The temporal and spatial characteristics of these persistent feature were examined with satellite infrared (IR) measurements during winter 1980–1981. In January 1981, a ship surveyed the vertical structure of several physical, chemical, and biological parameters beneath one of these SST features centered near 32°N, 124°W. The surface IR pattern had a length scale of 200 km and a time scale of about 100 days. It disintegrated following the first two storms of the winter season. Motion studies of the pattern in late October indicated an anticyclonic rotation with maximum velocities of 50 cm s?1 at 50 km from the axis of rotation. As a unit, the pattern advected southward with an average speed of 1 cm s?1. Thermal fronts, determined from the satellite imagery, were strongest (0.4°C km?1) along the rim of the pattern and were advected anticyclonically with the pattern; their length scales were 20–30 km in the along-front direction and less than 10 km wide. The hydrographic data revealed a three-layer structure beneath the surface pattern; a 75 m deep surface layer, a cold-core region from 75 to 200 m depth, and a warm-core eddy extending from 250 to 1450 m. The anticyclonic motion of the surface layer was caused by a geostrophic adjustment to the surface dynamic height anomaly produced by the subsurface warm-core eddy. The IR pattern observed from space reflects the horizontal structure of the surface layer and is consistent with a theoretical model of a mean horizontal SST gradient perturbed by a subsurface density anomaly. Ship of opportunity SST observations collected by the National Marine Fisheries are shown to resolve mesoscale patterns. For December 1980, the SST pattern near 32°N, 124°W represented a 2°C warm anomaly compared with the 20-year mean monthly SST pattern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号