首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   2篇
大气科学   1篇
地球物理   4篇
地质学   6篇
海洋学   1篇
天文学   12篇
自然地理   2篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2013年   1篇
  2011年   2篇
  2010年   8篇
  2008年   4篇
  2007年   2篇
  2000年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
11.
12.
Using an electron transport model, we calculate the electron density of the electron impact-produced nighttime ionosphere of Mars and its spatial structure. As input we use Mars Global Surveyor electron measurements, including an interval when accelerated electrons were observed. Our calculations show that regions of enhanced ionization are localized and occur near magnetic cusps. Horizontal gradients in the calculated ionospheric electron density on the night side of Mars can exceed 104 cm−3 over a distance of a few tens of km; the largest gradients produced by the model are over 600 cm−3 km−1. Such large gradients in the plasma density have several important consequences. These large pressure gradients will lead to localized plasma transport perpendicular to the ambient magnetic field which will generate horizontal currents and electric fields. We calculate the magnitude of these currents to be up to 10 nA/m2. Additionally, transport of ionospheric plasma by neutral winds, which vary in strength and direction as a function of local time and season, can generate large (up to 1000 nA/m2) and spatially structured horizontal currents where the ions are collisionally coupled to the neutral atmosphere while electrons are not. These currents may contribute to localized Joule heating. In addition, closure of the horizontal currents and electric fields may require the presence of vertical, field-aligned currents and fields which may play a role in high altitude acceleration processes.  相似文献   
13.
We present observations of what may be the inner region of a lunar mini-magnetosphere. If so, these likely represent the first such observations. Previous studies of solar wind interaction with lunar crustal magnetic fields found increased particle fluxes associated with magnetic amplifications, suggesting a shock/sheath region. The central density cavity expected in the inner mini-magnetosphere (if analogous to other planetary magnetospheres) has proven elusive. We now present Lunar Prospector fly-throughs of a density cavity near a strong crustal magnetic source in the solar wind, and compare these unique observations with typical orbits in the solar wind and wake. We observed the density cavity on two consecutive orbits on July 14, 1999 with optimal viewing geometry, downstream from one of the strongest lunar crustal sources (an anomaly centered at 235E, 20S), during very unusual solar wind conditions. We found no other similar features in the solar wind in 7 months of low-altitude orbits, suggesting that fully formed lunar mini-magnetospheres are rare and/or difficult to observe from orbit.  相似文献   
14.
Data from the Ion Mass Analyzer (IMA) sensor of the ASPERA-3 instrument suite onboard Mars Express and data from the Magnetometer/Electron Reflectometer (MAG/ER) on Mars Global Surveyor have been analyzed to determine whether ion beam events (IBEs) are correlated with the direction of the draped interplanetary magnetic field (IMF) or the proximity of strong crustal magnetic fields to the subsolar point. We examined 150 IBEs and found that they are organized by IMF draping direction. However, no clear dependence on the subsolar longitude of the strongest magnetic anomaly is evident, making it uncertain whether crustal magnetic fields have an effect on the formation of the beams. We also examined data from the IMA sensor of the ASPERA-4 instrument suite on Venus Express and found that IBEs are observed at Venus as well, which indicates the morphology of the Martian and Venusian magnetotails are similar.  相似文献   
15.
Existing geotechnical approaches that describe volumetric changes in intertidal sediments in response to applied vertical effective stresses are limited by a lack of empirical research into their one-dimensional compression behaviour. In this paper we address this deficiency by presenting the results of an investigation into the compression behaviour of minerogenic low marsh and tidal flat sediments. We have tested samples of these sediment types obtained from Greatham Creek (Cowpen Marsh, Tees Estuary, UK). Analysis of physical properties and oedometer compression tests demonstrates that, contrary to the implicit assumptions of existing models, the surface sediments studied are overconsolidated. Structural variability between samples arises due to sedimentological factors, notably variations in organic content. We attribute overconsolidation to tidal exposure and falls in groundwater level that permit desiccation and cause capillary suction stresses. Greater rates of compression with respect to effective stress occur in sediments with higher initial voids ratios and more open, unstable initial structures. Variability in structure decreases with application of higher effective stresses due to the destructuration of the sediments, which also creates increased homogeneity of compression behaviour under higher effective stresses. We subsequently develop a new conceptual framework to describe compression behaviour in minerogenic intertidal sediments that incorporates overconsolidation. We advocate a statistical approach that accounts for structural variability and variations in compression behaviour at effective stresses less than and greater than the yield stress. We argue that our conceptual framework is broadly applicable to minerogenic intertidal sediments at different locations and burial depths within Holocene stratigraphic sequences providing site-specific compression data are collected. Inter-site transfer and application of measured material properties should not be undertaken due to local variations in compression behaviour resulting from varying ecological, sedimentological, geochemical, climatic, geomorphic and hydrographic conditions. The individual characteristics of different field locations should be carefully considered before the suggested framework is routinely applied.  相似文献   
16.
Using minimum variance analysis of the circular mapping data from the Mars Global Surveyor (MGS) spacecraft during four selected weeks of observation, we identify 360 magnetic field structures in the Martian topside ionosphere with characteristic signatures of flux ropes. Physical parameters including size, peak field strength, helicity, orientation, and external conditions at the time of each observation are compiled for the events in each population. We observe that Martian flux ropes typically have a peak field amplitude of ∼15 nT and a diameter of ∼80–100 km assuming they are stationary. Flux ropes tend to be aligned approximately parallel to the planetary surface, and perpendicular to the direction from which the solar wind flows. They are more frequently observed during times of low solar wind pressure, but do not show a clear preference for a particular Interplanetary Magnetic Field (IMF) draping direction. Flux rope characteristics of peak field amplitude, diameter, and helicity vary with solar zenith angle. Amplitudes tend to be higher during periods of high solar wind pressure. The events are sorted into three populations based on the location at which they were observed, possibly corresponding to distinct formation mechanisms. Flux ropes observed in eclipse tend to have smaller peak amplitudes and are larger than those observed in sunlight, and are less likely to be oriented parallel to the planetary surface. Proximity to crustal fields does not appear to influence the characteristics of flux ropes observed at the 400 km spacecraft altitude. The frequent observation of flux rope structures near Mars in a variety of locations suggests that the low-altitude plasma environment is quite dynamic, with magnetic shear playing a prominent role in determining magnetic field structure near the planet.  相似文献   
17.
Potential flow based vortex numerical methods have been widely used in aerodynamics and hydrodynamics. In these methods, vortices shed from lifting bodies are traced by using vortex filaments or dipole panels. When the wake elements encounter a downstream body, such as a rudder behind a propeller or a stator behind a rotor, a treatment is necessary to divert the wake elements to pass by the body. This treatment is vital to make wake simulations realistic and to satisfy the non-penetration condition during wake body interaction. It also helps to avoid pure numerical disturbances such as when a vortex filament or an edge of a dipole panel passes through the collection point of a body element; this is a singularity for induced velocity and it will introduce a large numerical disturbance. This necessary treatment for three-dimensional problems with geometrical complexity has not been found to date. In this study, a wake impingement model was developed to divert wake elements to slip over the body surface, model the vortex/body interaction, and predict forces on fluctuating components. The model was also tested on configurations of oscillating foils in tandem with an existing panel method code. Simulation results with the wake impingement model are shown to be in closer agreement with limited published experimental data than those without the model. With the established wake impingement model, force fluctuations on the after body due to the wake vortex impingement were investigated based on a series of simulations. The series varied several parameters including distance between two foils, oscillating frequency, span, rear foil pitch angle, swap angle and vertical position.  相似文献   
18.
Shore platforms control wave energy transformation which, in turn, controls energy delivery to the cliff toe and nearshore sediment transport. Insight into shore platform erosion rates has conventionally been constrained at millimetre-scales using micro-erosion metres, and at metre-scales using cartographic data. On apparently slowly eroding coasts, such approaches are fundamentally reliant upon long-term observation to capture emergent erosion patterns. Where in practise timescales are short, and where change is either below the resolution or saturates the mode of measurement, the collection of data that enables the identification of the actual mechanisms of erosion is hindered. We developed a method to monitor shore platform erosion at millimetre resolution within metre-scale monitoring plots using Structure-from-Motion photogrammetry. We conducted monthly surveys at 15 0.25 m2 sites distributed across the Hartle Loup platform in North Yorkshire, UK, over one year. We derived topographic data at 0.001 m resolution, retaining a vertical precision of change detection of 0.001 m. We captured a mean erosion rate of 0.528 mm yr-1, but this varied considerably both across the platform and through the year. We characterized the volume and shape of eroded material. The detachment volume–frequency and shape distributions suggest that erosion happens primarily via removal of shale platelets. We identify that the at-a-point erosion rate can be predicted by the distance from the cliff and the tidal level, whereby erosion rates are higher closer to the cliff and at locations of higher tidal duration. The size of individual detachments is controlled by local micro-topography and rock structure, whereby larger detachments are observed on more rough sections of the platform. Faster erosion rates and larger detachments occur in summer months, rather than in more energetic winter conditions. These results have the potential to form the basis of improved models of how platforms erode over both short- and long-timescales. © 2019 John Wiley & Sons, Ltd.  相似文献   
19.
本工作首次在实验室条件下对浅生区紫硫镍矿(Ni,Fe)3S4交代镍黄铁矿(Ni,Fe)9S8水热反应的机理及动力学进行了研究。起始反应矿物采用高纯自然镍黄铁矿,合成纯镍黄铁矿或合成镍黄铁矿-磁黄铁矿集合体。反应pH值采用0.2M醋酸-醋酸纳缓冲溶液控制在3~5的范围内。反应进程由X-射线衍射物相定量分析及扫描电镜观察进行跟踪。结果表明,当反应温度恒定在80℃时,交代20(4)%的镍黄铁矿需792h。相同条件下加入少量H2S可将反应速率提高一倍。当反应在125℃饱和蒸汽压水热环境下进行时,完全交代纯镍黄铁矿需约168h。此过程由于磁黄铁矿的存在而被催化,交代集合体中的镍黄铁矿仅需68h,进一步反应磁黄铁矿被交代成白铁矿。磁黄铁矿的催化作用可能源于溶解产生的微裂纹加速了流体的传质过程。当反应温度升高至145℃时,速率反而下降,不遵循Arrhenius经验规律。动力学分析得80℃速率常数介于5.8×10-8~3.0×10-7/s之间,125℃及145℃速率常数分别介于2.8×10-6~2.08×10-5/s及1×10-6~5.1×10-6/s之间,远高于同温度下固相扩散反应的速率常数,表明该反应在地质时标上为一快速反应。此外,用背散射电子显微技术对矿物表面形貌进行了分析,发现交代产物紫硫镍矿具有颗粒细小及存在微裂纹等特征,与自然界浅生矿床中的紫硫镍矿非常相似;电镜实验还表明该交代作用是一个典型的耦合溶解-再沉淀反应。其耦合机制的驱动力可能与反应界面处微空隙对流体饱和度的控制有关。  相似文献   
20.
We have used the ion mass analyzer (IMA) and magnetometer (MAG) on Venus Express (VEX) to study escaping O+ during interplanetary coronal mass ejections (ICMEs). Data from 389 VEX orbits during 2006 and 2007 revealed 265 samples of high energy pick-up ion features in 197 separate orbits. Magnetometer data during the same time period showed 17 ICMEs. The interplanetary conditions associated with the ICMEs clearly accelerate the pick-up ions to higher energies at lower altitudes compared to undisturbed solar wind. However, there is no clear dependence of the pick-up ion flux on ICMEs which may be attributed to the fact that this study used data from a period of low solar activity, when ICMEs are slow and weak relative to solar maximum. Alternatively, atmospheric escape rates may not be significantly changed during ICME events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号