首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   746篇
  免费   34篇
  国内免费   5篇
测绘学   47篇
大气科学   56篇
地球物理   181篇
地质学   241篇
海洋学   32篇
天文学   143篇
综合类   5篇
自然地理   80篇
  2023年   5篇
  2022年   6篇
  2021年   16篇
  2020年   16篇
  2019年   22篇
  2018年   24篇
  2017年   24篇
  2016年   32篇
  2015年   26篇
  2014年   27篇
  2013年   60篇
  2012年   40篇
  2011年   32篇
  2010年   29篇
  2009年   49篇
  2008年   31篇
  2007年   40篇
  2006年   34篇
  2005年   38篇
  2004年   29篇
  2003年   25篇
  2002年   24篇
  2001年   20篇
  2000年   19篇
  1999年   12篇
  1998年   5篇
  1997年   9篇
  1996年   10篇
  1995年   8篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1987年   6篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   6篇
  1972年   2篇
  1970年   1篇
排序方式: 共有785条查询结果,搜索用时 312 毫秒
101.
Rivers respond to environmental changes such as climate shifts, land use changes and the construction of hydro‐power dams in a variety of ways. Often there are multiple potential responses to any given change. Traditionally, potential stream channel response has been assessed using simple, qualitative frameworks based largely on professional judgement and field experience, or using some form of regime theory. Regime theory represents an attempt to use a physically based approach to predict the configuration of stable channels that can transport the imposed sediment supply with the available discharge. We review the development of regime theory, and then present a specific regime model that we have created as a stand‐alone computer program, called the UBC Regime Model (UBCRM). UBCRM differs from other regime models in that it constrains its predictions using a bank stability criterion, as well as a pattern stability criterion; it predicts both the stable channel cross‐sectional dimensions as well as the number of anabranches that the stream must have in order to establish a stable channel pattern. UBCRM also differs from other models in that it can be used in a stochastic modelling mode that translates uncertainty in the input variables into uncertainty in the predicted channel characteristics. However, since regime models are fundamentally based on the concept of grade, there are circumstances in which the model does not perform well. We explore the strengths and weaknesses of the UBCRM in this paper, and we attempt to illustrate how the UBCRM can be used to augment the existing qualitative frameworks, and to help guide professionals in their assessments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
102.
The clumping index measures the spatial aggregation (clumped, random and regular) of foliage elements. The global mapping of the clumping index with a limited eight-month multi-angular POLDER 1 dataset is expanded by integrating new, complete year-round observations from POLDER 3. We show that terrain-induced shadows can enhance bi-directional reflectance distribution function variation and negatively bias the clumping index (i.e. indicating more vegetation clumping) in rugged terrain. Using a global high-resolution digital elevation model, a topographic compensation function is devised to correct for this terrain effect. The clumping index reductions can reach up to 30% from the topographically non-compensated values, depending on terrain complexity and land cover type. The new global clumping index map is compared with an assembled set of field measurements from 32 different sites, covering four continents and diverse biomes.  相似文献   
103.
The formation of the supercontinent Pangaea during the Permo–Triassic gave rise to an extreme monsoonal climate (often termed ‘mega-monsoon’) that has been documented by numerous palaeo-records. However, considerable debate exists about the role of orbital forcing in causing humid intervals in an otherwise arid climate. To shed new light on the forcing of monsoonal variability in subtropical Pangaea, this study focuses on sediment facies and colour variability of playa and alluvial fan deposits in an outcrop from the late Carnian (ca 225 Ma) in the southern Germanic Basin, south-western Germany. The sediments were deposited against a background of increasingly arid conditions following the humid Carnian Pluvial Event (ca 234 to 232 Ma). The ca 2·4 Myr long sedimentary succession studied shows a tripartite long-term evolution, starting with a distal mud-flat facies deposited under arid conditions. This phase was followed by a highly variable playa-lake environment that documents more humid conditions and finally a regression of the playa-lake due to a return of arid conditions. The red–green (a*) and lightness (L*) records show that this long-term variability was overprinted by alternating wet/dry cycles driven by orbital precession and ca 405 kyr eccentricity, without significant influence of obliquity. The absence of obliquity in this record indicates that high-latitude forcing played only a minor role in the southern Germanic Basin during the late Carnian. This is different from the subsequent Norian when high-latitude signals became more pronounced, potentially related to the northward drift of the Germanic Basin. The recurring pattern of pluvial events during the late Triassic demonstrates that orbital forcing, in particular eccentricity, stimulated the occurrence and intensity of wet phases. It also highlights the possibility that the Carnian Pluvial Event, although most likely triggered by enhanced volcanic activity, may also have been modified by an orbital stimulus.  相似文献   
104.
Researchers have associated channel-forming flows with reach-average shear stresses close to the entrainment threshold for the surface D50 . We conducted experiments using a model of a generic steep, gravel–cobble stream to test this association. Our results suggest that channel-forming flows fully mobilize the D50 , and produce shear stresses close to the entrainment threshold for the largest grains in the bed. The channel dimensions were set by flows capable of mobilizing between 85% and 90% of the bed surface, which produced a brief period of lateral instability lasting about 1 h, followed by a prolonged period of relative stability during which modest adjustments occurred, but during which the reach-average hydraulics remained about the same. The adjustments during the unstable phase of the experiments are characterized by rapid bank erosion, extensive deposits on the channel bed and a restructuring of the major morphologic elements of the stream. The adjustments during the stable phase of the experiments involved barform migration and bed surface coarsening but did not appreciably modify the physical template established by the end of the unstable phase. The behaviour we observed is not consistent with the concept of a dynamic equilibrium associated with a formative flow that is just capable of entraining the bed surface D50 . Instead, it suggests that rapid adjustments occur once a stability threshold is exceeded, which creates a template that constrains channel activity until another event drives the system across the stability threshold, and re-sets the template. While we believe that it is probably too simplistic to associate a channel-forming discharge with the entrainment threshold for a single grain size, our results suggest that the D95 is a more logical choice than the D50 © 2020 John Wiley & Sons, Ltd.  相似文献   
105.
The chronology of the Solar System, particularly the timing of formation of extra‐terrestrial bodies and their features, is an outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g., Rb‐Sr, K‐Ar), and even applied (K‐Ar), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extra‐terrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. Herein, we discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analysing samples are described, along with an exploration of limitations such as mass, power and cost. Two potential solutions for the in situ extra‐terrestrial deployment of the 40Ar/39Ar method are presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.  相似文献   
106.
We carried out a magnetotelluric field campaign in the South–East Lower Saxony Basin, Germany, with the main goal of testing this method for imaging regional Posidonia black shale sediments. Two‐dimensional inversion results of the magnetotelluric data show a series of conductive structures correlating with brine‐saturated sediments but also with deeper, anthracitic Westphalian/Namurian coals. None of these structures can be directly related with the Posidonia black shale, which appears to be generally resistive and therefore difficult to resolve with the magnetotelluric method. This assumption is supported by measurements of electrical resistivity on a set of Posidonia shale samples from the Hils syncline in the Lower Saxony basin. These rock samples were collected in shallow boreholes and show immature (0.53% Ro), oil (0.88% Ro), and gas (1.45% Ro) window thermal maturities. None of the black shale samples showed low electrical resistivity, particularly those with oil window maturity show resistivity exceeding 104 Ωm. Moreover, we could not observe a direct correlation between maturity and electrical resistivity; the Harderode samples showed the highest resistivity, whereas the Haddessen samples showed the lowest. A similar trend has been seen for coals in different states of thermal maturation. Saturation of the samples with distilled and saline water solutions led to decreasing electrical resistivity. Moreover, a positive correlation of electrical resistivity with porosity is observed for the Wickensen and Harderode samples, which suggests that the electrical resistivity of the Posidonia black shale is mainly controlled by porosity.  相似文献   
107.
The M w 3.2-induced seismic event in 2006 due to fluid injection at the Basel geothermal site in Switzerland was the starting point for an ongoing discussion in Europe on the potential risk of hydraulic stimulation in general. In particular, further development of mitigation strategies of induced seismic events of economic concern became a hot topic in geosciences and geoengineering. Here, we present a workflow to assess the hazard of induced seismicity in terms of occurrence rate of induced seismic events. The workflow is called Forward Induced Seismic Hazard Assessment (FISHA) as it combines the results of forward hydromechanical-numerical models with methods of time-dependent probabilistic seismic hazard assessment. To exemplify FISHA, we use simulations of four different fluid injection types with various injection parameters, i.e. injection rate, duration and style of injection. The hydromechanical-numerical model applied in this study represents a geothermal reservoir with preexisting fractures where a routine of viscous fluid flow in porous media is implemented from which flow and pressure driven failures of rock matrix and preexisting fractures are simulated, and corresponding seismic moment magnitudes are computed. The resulting synthetic catalogues of induced seismicity, including event location, occurrence time and magnitude, are used to calibrate the magnitude completeness M c and the parameters a and b of the frequency-magnitude relation. These are used to estimate the time-dependent occurrence rate of induced seismic events for each fluid injection scenario. In contrast to other mitigation strategies that rely on real-time data or already obtained catalogues, we can perform various synthetic experiments with the same initial conditions. Thus, the advantage of FISHA is that it can quantify hazard from numerical experiments and recommend a priori a stimulation type that lowers the occurrence rate of induced seismic events. The FISHA workflow is rather general and not limited to the hydromechanical-numerical model used in this study and can therefore be applied to other fluid injection models.  相似文献   
108.
Matija ?uk  Brett J. Gladman 《Icarus》2011,216(1):363-365
?uk et al. (?uk, M. Gladman, B.J., Stewart, S.T. [2010]. Icarus 207 590-594) concluded that the the lunar cataclysm (late heavy bombardment) was recorded in lunar Imbrian era craters, and that their size distribution is different from that of main belt asteroids (which may have been the dominant pre-Imbrian impactors). This result would likely preclude the asteroid belt as the direct source of lunar cataclysm impactors. Malhotra and Strom (Malhotra, R., Strom, R.G. [2011]. Icarus) maintain that the lunar impactor population in the Imbrian era was the same as in Nectarian and pre-Nectarian periods, and this population had a size distribution identical to that of main belt asteroids. In support of this claim, they present an Imbrian size distribution made from two data sets published by Wilhelms et al. (Wilhelms, D.E., Oberbeck, V.R., Aggarwal, H.R. [1978]. Proc. Lunar Sci. Conf. 9, 3735-3762). However, these two data sets cannot be simply combined as they represent areas of different ages and therefore crater densities. Malhotra and Strom (Malhotra, R., Strom, R.G. [2011]. Icarus) differ with the main conclusion of Wilhelms et al. (Wilhelms, D.E., Oberbeck, V.R., Aggarwal, H.R. [1978]. Proc. Lunar Sci. Conf. 9, 3735-3762) that the Nectarian and Imbrian crater size distributions were different. We conclude that the available data indicate that the lunar Imbrian-era impactors had a different size distribution from the older ones, with the Imbrian impactor distribution being significantly richer in small impactors than that of older lunar impactors or current main-belt asteroids.  相似文献   
109.
110.
Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as ‘monsoon’ or ‘cloudburst’ rains. Velocities of the moving debris range from about 5 km/h to about 90 km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号