首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1716篇
  免费   86篇
  国内免费   17篇
测绘学   36篇
大气科学   117篇
地球物理   405篇
地质学   576篇
海洋学   154篇
天文学   328篇
综合类   3篇
自然地理   200篇
  2023年   6篇
  2021年   18篇
  2020年   33篇
  2019年   27篇
  2018年   37篇
  2017年   49篇
  2016年   49篇
  2015年   39篇
  2014年   48篇
  2013年   80篇
  2012年   52篇
  2011年   100篇
  2010年   82篇
  2009年   93篇
  2008年   78篇
  2007年   50篇
  2006年   83篇
  2005年   70篇
  2004年   56篇
  2003年   63篇
  2002年   47篇
  2001年   35篇
  2000年   32篇
  1999年   61篇
  1998年   35篇
  1997年   22篇
  1996年   33篇
  1995年   22篇
  1994年   27篇
  1993年   21篇
  1992年   21篇
  1991年   17篇
  1990年   21篇
  1989年   23篇
  1988年   19篇
  1987年   12篇
  1986年   22篇
  1985年   24篇
  1984年   29篇
  1983年   21篇
  1982年   35篇
  1981年   17篇
  1980年   12篇
  1979年   16篇
  1978年   15篇
  1977年   11篇
  1976年   10篇
  1975年   5篇
  1974年   5篇
  1973年   13篇
排序方式: 共有1819条查询结果,搜索用时 15 毫秒
991.
992.
Iron isotope fractionation between aqueous Fe(II) and biogenic magnetite and Fe carbonates produced during reduction of hydrous ferric oxide (HFO) by Shewanella putrefaciens, Shewanella algae, and Geobacter sulfurreducens in laboratory experiments is a function of Fe(III) reduction rates and pathways by which biogenic minerals are formed. High Fe(III) reduction rates produced 56Fe/54Fe ratios for Fe(II)aq that are 2-3‰ lower than the HFO substrate, reflecting a kinetic isotope fractionation that was associated with rapid sorption of Fe(II) to HFO. In long-term experiments at low Fe(III) reduction rates, the Fe(II)aq-magnetite fractionation is −1.3‰, and this is interpreted to be the equilibrium fractionation factor at 22°C in the biologic reduction systems studied here. In experiments where Fe carbonate was the major ferrous product of HFO reduction, the estimated equilibrium Fe(II)aq-Fe carbonate fractionations were ca. 0.0‰ for siderite (FeCO3) and ca. +0.9‰ for Ca-substituted siderite (Ca0.15Fe0.85CO3) at 22°C. Formation of precursor phases such as amorphous nonmagnetic, noncarbonate Fe(II) solids are important in the pathways to formation of biogenic magnetite or siderite, particularly at high Fe(III) reduction rates, and these solids may have 56Fe/54Fe ratios that are up to 1‰ lower than Fe(II)aq. Under low Fe(III) reduction rates, where equilibrium is likely to be attained, it appears that both sorbed Fe(II) and amorphous Fe(II)(s) components have isotopic compositions that are similar to those of Fe(II)aq.The relative order of δ56Fe values for these biogenic minerals and aqueous Fe(II) is: magnetite > siderite ≈ Fe(II)aq > Ca-bearing Fe carbonate, and this is similar to that observed for minerals from natural samples such as Banded Iron Formations (BIFs). Where magnetite from BIFs has δ56Fe >0‰, the calculated δ56Fe value for aqueous Fe(II) suggests a source from midocean ridge (MOR) hydrothermal fluids. In contrast, magnetite from BIFs that has δ56Fe ≤0‰ apparently requires formation from aqueous Fe(II) that had very low δ56Fe values. Based on this experimental study, formation of low-δ56Fe Fe(II)aq in nonsulfidic systems seems most likely to have been produced by dissimilatory reduction of ferric oxides by Fe(III)-reducing bacteria.  相似文献   
993.
We present data on major ions, nutrients and trace metals in an Antarctic stream. The Onyx River is located in Wright Valley (77-32 S; 161-34 E), one of a group of ancient river and glacier-carved landforms that comprise the McMurdo Dry Valleys of Antarctica. The river is more than 30 km long and is the largest of the glacial meltwater streams that characterize this relatively ice-free region near the Ross Sea. The complete absence of rainfall in the region and the usually small contributions of glacially derived tributaries to the main channel make this a comparatively simple system for geochemical investigation. Moreover, the lack of human impacts, past or present, provides an increasingly rare window onto a pristine aquatic system.For all major ions and silica, we observe increasing concentrations with distance from Lake Brownworth down to the recording weir near Lake Vanda. Chemical weathering rates are unexpectedly high and may be related to the rapid dissolution of ancient carbonate deposits and to the severe physical weathering associated with the harsh Antarctic winter. Of the nutrients, nitrate and dissolved reactive phosphate appear to have quite different sources. Nitrate is enriched in waters near the Lower Wright Glacier and may ultimately be derived from stratospheric sources; while phosphate is likely to be the product of chemical weathering of valley rocks and soils. We confirm the work of earlier investigations regarding the importance of the Boulder Pavement as a nutrient sink.Dissolved Mn, Fe, Ni, Cu, and Cd are present at nanomolar levels and, in all cases, the concentrations of these metals are lower than in average world river water. We hypothesize that metal uptake and exchange with particulate phases along the course of the river may serve as a buffer for the dissolved load. Concurrent study of these three solute classes points out significant differences in the mechanisms and sites of their removal from the Onyx River.  相似文献   
994.
995.
Multibeam bathymetry and 3.5-kHz sub-bottom profiler data collected from the US icebreaker Healy in 2003 provide convincing evidence for grounded ice on the Chukchi Borderland off the northern Alaskan margin, Arctic Ocean. The data show parallel, glacially induced seafloor scours, or grooves, and intervening ridges that reach widths of 1000 m (rim to rim) and as much as 40 m relief. Following previous authors, we refer to these features as “megascale glacial lineations (MSGLs).” Additional support for ice grounding is apparent from stratigraphic unconformities, interpreted to have been caused by ice-induced erosion. Most likely, the observed sea-floor features represent evidence for massive ice-shelf grounding. The general ESE/WNW direction of the MSGLs, together with sediment, evidently bulldozed off the Chukchi Plateau, that is mapped on the western (Siberian) side of the plateau, suggests ice flow from the Canada Basin side of Chukchi Borderland. Two separate generations of glacially derived MSGLs are identified on the Chukchi Borderland from the Healy geophysical data. The deepest and oldest extensive MSGLs appear to be draped by sediments less than 5 m thick, whereas no sediment drape can be distinguished within the resolution of the sub-bottom profiles on the younger generation.  相似文献   
996.
Brian H King 《Area》2005,37(1):64-72
South Africa's democratic transition has had a significant impact upon localized governance systems in mediating development opportunities within the former apartheid homelands. This paper uses a case study from the former KaNgwane homeland to evaluate the role of the Matsamo Tribal Authority in shaping livelihoods and access to environmental resources. It is argued that although the colonial and apartheid empowerment of the tribal authorities continues to have symbolic and material meaning for rural populations, newly created democratic structures are challenging traditional governance systems in the post-apartheid era. The intersection between these contrasting, and historically situated, systems suggests a dynamic renegotiation is occurring that will continue to impact rural households within the former places of apartheid.  相似文献   
997.
While links between social and physical disorder, crime, and the fear of crime have long been areas of research interest, few studies have looked at these links from a spatiotemporal viewpoint. This is somewhat surprising, as many of the factors associated with disorder, crime, and fear are known to vary over time and space. This paper uses GISystems to investigate potential spatiotemporal links between these areas in Wollongong, New South Wales, with specific focus on links between graffiti and the fear of crime. The results reveal that the distribution of fear of crime varies considerably over time and is often spatially coincident with concentrations of disorder. Graffiti was found to be one of the most prevalent types of physical disorder. The results are discussed in the context of the “broken windows” thesis and strategic intervention at the community level.  相似文献   
998.
We analyzed 85 fluid inclusions from seven samples from the porphyry Cu–Mo deposit in Butte, MT, using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The Butte deposit formed at unusually great depth relative to most porphyry deposits, and fluid inclusions in deep veins trapped a low-salinity, CO2-bearing, magmatically derived, supercritical fluid as a single aqueous phase. This fluid is interpreted to be the parent fluid that cooled, decompressed, unmixed, and reacted with wall rock to form the gigantic porphyry Cu deposit at Butte. Few previous analyses of such fluids exist.Low-salinity, aqueous fluids from the earliest veins at Butte are trapped in deep veins with biotite-rich alteration envelopes (EDM veins). These veins, and the Butte quartz monzonite surrounding them, host much of the Butte porphyry Cu mineralization. Twenty fluid inclusions in one EDM quartz vein are dominated by Na, K, Fe (from 0.1 to 1 wt.%) and contain up to 1.3 wt.% Cu. These inclusions contain only small amounts (tens of ppm) of Pb, Zn, and Mn, and typically contain Li, B, Ca, As, Mo, Ag, Sn, Sb, Ba, and W in less than detectable quantities. The abundance of Cu in early fluids indicates that a low-salinity, Cu-rich, aqueous ore fluid can be directly produced by aqueous fluid separation from a granitic magma. Similar inclusions (eight) in an early deep quartz–molybdenite vein with a K-feldspar selvage have similar compositions but contain significantly less Cu than most inclusions in the biotite-altered vein. Analyzed inclusions in both veins contain less than detectable concentrations of Mo even though one is molybdenite-bearing.Low-salinity, CO2-bearing aqueous fluids are also trapped in pyrite–quartz veins with sericitic selvages. These veins cut both of the above vein types and contain inclusions that were trapped at lower pressure and temperature. Thirty-nine inclusions in two such veins have compositions similar to early fluids, but are enriched by up to a factor of 10 in Mn, Pb, and Zn relative to early fluids, and are slightly depleted in Fe. Many of these inclusions contain as much or more Cu than early fluids, although little chalcopyrite is found in or around pyrite–quartz veins.Eighteen halite-bearing inclusions from three veins from both chalcopyrite-bearing and barren veins with both K-silicate and sericitic selvages were analyzed as well. Halite-saturated inclusions are dominated by Na, K, Fe, and in some inclusions Ca. Whereas these inclusions are significantly enriched in Ca, Mn, Fe, Zn, and Pb, fluids in all three veins contain significantly less Cu than early, high temperature, low-salinity inclusions.Analyses of all inclusion types show that whereas bulk-salinity of the hydrothermal fluid must be largely controlled by the magma, fluid–rock interactions have a significant role in controlling fluid compositions and metal ratios. Cu concentrations range over an order of magnitude, more than any other element, in all four samples containing low-salinity inclusions. We infer that variations are the result of fluid trapping after different amounts of fluid–rock reaction and chalcopyrite precipitation. Enrichment, relative to early fluids, of Mn, Pb, and Zn in fluids related to sericitic alteration is also likely the result of fluid–rock reaction, whereby these elements are released from biotite and feldspars as they alter to sericite. In halite-bearing inclusions, concentrations of Sr, Ca, Pb, and Ba are elevated in inclusions from the pyrite–quartz vein with sericitic alteration relative to halite-bearing inclusions from unaltered and potassically altered samples. Such enrichment is likely caused by the breakdown of plagioclase and K-feldspar in the alteration envelope, releasing Sr, Ca, Pb, and Ba.  相似文献   
999.
1000.
Abstract Basal ice samples were collected from ice exposures in a natural subglacial cavity beneath an outlet glacier of Øksfjordjøkelen, North Norway. Sediment and cation (Ca2+, Mg2+, Na+, K+) concentrations were then determined, and indicate stacking of basal ice units producing a repeat pattern of ‘clean firnification ice’ overlying sediment‐rich ice. All measured cations show correlation with sediment concentration indicating weathering reactions to be the dominant contributor of cations. Regressions of specific sediment surface area per unit volume with cation concentration are performed and used to predict cation concentrations. These predicted values provide an indication of cation relocation within the basal ice sequence. The results suggest limited melting and refreezing resulting in the relocation of predominantly monovalent cations downward through the profile. Exchange of cations into solution during the melting of sediment‐rich ice samples has previously been suggested as a source of error in such investigations. Analyses of sediment‐free regelation ice spicules formed at the bed show cation concentrations above firnification ice levels and comparable, in many instances, to the basal ice samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号